Dynamical trapping and chaotic scattering of the harmonically driven barrier

被引:25
|
作者
Koch, Florian R. N. [1 ]
Lenz, Florian [1 ]
Petri, Christoph [1 ]
Diakonos, Fotios K. [2 ]
Schmelcher, Peter [1 ,3 ]
机构
[1] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany
[2] Univ Athens, Dept Phys, GR-15771 Athens, Greece
[3] Heidelberg Univ, Inst Phys Chem, D-69120 Heidelberg, Germany
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 05期
关键词
D O I
10.1103/PhysRevE.78.056204
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A detailed analysis of the classical nonlinear dynamics of a single driven square potential barrier with harmonically oscillating position is performed. The system exhibits dynamical trapping which is associated with the existence of a stable island in phase space. Due to the unstable periodic orbits of the KAM structure, the driven barrier is a chaotic scatterer and shows stickiness of scattering trajectories in the vicinity of the stable island. The transmission function of a suitably prepared ensemble yields results which are very similar to tunneling resonances in the quantum mechanical regime. However, the origin of these resonances is different in the classical regime.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [1] Noise-Enhanced Trapping in Chaotic Scattering
    Altmann, Eduardo G.
    Endler, Antonio
    PHYSICAL REVIEW LETTERS, 2010, 105 (24)
  • [2] Characterization of a periodically driven chaotic dynamical system
    Crisanti, A.
    Falcioni, M.
    Lacorata, G.
    Purini, R.
    Journal of Physics A: Mathematical and General, 30 (02):
  • [3] Characterization of a periodically driven chaotic dynamical system
    Crisanti, A
    Falcioni, M
    Lacorata, G
    Purini, R
    Vulpiani, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (02): : 371 - 383
  • [4] Periodic, aperiodic and chaotic motions of harmonically excited SDOF and MDOF nonlinear dynamical systems
    Shudong Yu
    Delun Wang
    The European Physical Journal Special Topics, 2019, 228 : 1855 - 1871
  • [5] Periodic, aperiodic and chaotic motions of harmonically excited SDOF and MDOF nonlinear dynamical systems
    Yu, Shudong
    Wang, Delun
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2019, 228 (09): : 1855 - 1871
  • [6] Microwave chaotic open cavities.Applications of dynamical trapping
    Luna-Acosta, G. A.
    Mendez-Bermudez, J. A.
    SIXTH INT KHARKOV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER AND SUBMILLIMETER WAVES/WORKSHOP ON TERAHERTZ TECHNOLOGIES, VOLS 1 AND 2, 2007, : 137 - +
  • [7] Trapping enhanced by noise in nonhyperbolic and hyperbolic chaotic scattering
    Nieto, Alexandre R.
    Seoane, Jesus M.
    Sanjuan, Miguel A. F.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 102
  • [8] Transient chimera states emerging from dynamical trapping in chaotic saddles
    Medeiros, Everton S.
    Omel'chenko, Oleh
    Feudel, Ulrike
    CHAOS, 2023, 33 (09)
  • [9] Pumping angular momentum by driven chaotic scattering
    Dittrich, T.
    Dubeibe, F. L.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (26)
  • [10] An Investigation of the Dynamical Transitions in Harmonically Driven Random Networks of Firing-Rate Neurons
    Nikiforou, Kyriacos
    Mediano, Pedro A. M.
    Shanahan, Murray
    COGNITIVE COMPUTATION, 2017, 9 (03) : 351 - 363