Chebyshev property of complete elliptic integrals and its application to Abelian integrals

被引:26
|
作者
Gasull, A [1 ]
Li, WG
Llibre, J
Zhang, ZF
机构
[1] Univ Autonoma Barcelona, E-08193 Barcelona, Spain
[2] Peking Univ, Beijing 100871, Peoples R China
关键词
D O I
10.2140/pjm.2002.202.341
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper has two parts. In the first one we study the maximum number of zeros of a function of the form f (k)K (k) + g (k) E (k), where k is an element of (-1,1), f and g are polynomials, and K (k) = integral(0)(pi/ 2) dtheta/root1-k(2) sin(2) theta and E(k) = integral(0)(pi/2) root1-k(2) sin(2) thetadtheta are the complete normal elliptic integrals of the first and second kinds, respectively. In the second part we apply the first one to obtain an upper bound for the number of limit cycles which appear from a small polynomial perturbation of the planar isochronous differential equation (z)over dot = iz + z(3), where z = x + iy is an element of C.
引用
收藏
页码:341 / 361
页数:21
相关论文
共 50 条
  • [1] A Chebyshev property for generalized Abelian integrals
    Girard, F
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (04): : 471 - 476
  • [2] On the Chebyshev Property of a Class of Hyperelliptic Abelian Integrals
    Sun, Yangjian
    Wang, Shaoqing
    Yang, Jiazhong
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (SUPPL 1)
  • [3] CHEBYSHEV POLYNOMIAL EXPANSIONS OF COMPLETE ELLIPTIC INTEGRALS
    CODY, WJ
    [J]. MATHEMATICS OF COMPUTATION, 1965, 19 (90) : 249 - &
  • [4] The Chebyshev property of some complete hyper-elliptic integrals of the first kind
    Liu, Changjian
    Sun, Yangjian
    Xiao, Dongmei
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (03):
  • [5] The Chebyshev property of some complete hyper-elliptic integrals of the first kind
    Changjian Liu
    Yangjian Sun
    Dongmei Xiao
    [J]. Computational and Applied Mathematics, 2024, 43
  • [6] On the Chebyshev Property of Certain Abelian Integrals Near a Polycycle
    Marin, D.
    Villadelprat, J.
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2018, 17 (01) : 261 - 270
  • [7] PARAMETER IDENTIFICATION ON ABELIAN INTEGRALS TO ACHIEVE CHEBYSHEV PROPERTY
    Sun, Xianbo
    Chen, Zhanbo
    Yu, Pei
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (10): : 5661 - 5679
  • [8] On the Chebyshev Property of Certain Abelian Integrals Near a Polycycle
    D. Marín
    J. Villadelprat
    [J]. Qualitative Theory of Dynamical Systems, 2018, 17 : 261 - 270
  • [9] New family of Abelian integrals satisfying Chebyshev property
    Cen, Xiuli
    Liu, Changjian
    Zhao, Yulin
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (12) : 7561 - 7581
  • [10] CHEBYSHEV APPROXIMATIONS FOR COMPLETE ELLIPTIC INTEGRALS K AND E
    CODY, WJ
    [J]. MATHEMATICS OF COMPUTATION, 1965, 19 (89) : 105 - &