On the notions of singular domination and (multi-)singular hyperbolicity

被引:6
|
作者
Crovisier, Sylvain [1 ]
da Luz, Adriana [2 ]
Yang, Dawei [3 ]
Zhang, Jinhua [4 ]
机构
[1] Univ Paris Sud, CNRS, Lab Math Orsay, F-91405 Orsay, France
[2] Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
[3] Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China
[4] Beihang Univ, Sch Math Sci, Beijing 100191, Peoples R China
基金
欧洲研究理事会; 中国国家自然科学基金;
关键词
multi-singular hyperbolicity; singular domination; star vector field; linear Poincare flow; SYSTEMS; SETS;
D O I
10.1007/s11425-019-1764-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The properties of uniform hyperbolicity and dominated splitting have been introduced to study the stability of the dynamics of diffeomorphisms. One meets difficulties when trying to extend these definitions to vector fields and Shantao Liao has shown that it is more relevant to consider the linear Poincare flow rather than the tangent flow in order to study the properties of the derivative. In this paper, we define the notion of singular domination, an analog of the dominated splitting for the linear Poincare flow which is robust under perturbations. Based on this, we give a new definition of multi-singular hyperbolicity which is equivalent to the one recently introduced by Bonatti and da Luz (2017). The novelty of our definition is that it does not involve the blow-up of the singular set and the rescaling cocycle of the linear flows.
引用
收藏
页码:1721 / 1744
页数:24
相关论文
共 50 条
  • [1] On the notions of singular domination and (multi-)singular hyperbolicity
    Sylvain Crovisier
    Adriana da Luz
    Dawei Yang
    Jinhua Zhang
    [J]. Science China Mathematics, 2020, 63 : 1721 - 1744
  • [2] On the notions of singular domination and(multi-)singular hyperbolicity To the Memory of Professor Shantao Liao
    Sylvain Crovisier
    Adriana da Luz
    Dawei Yang
    Jinhua Zhang
    [J]. Science China Mathematics, 2020, 63 (09) : 1721 - 1744
  • [3] HYPERBOLICITY OF SINGULAR SPACES
    Cadorel, Benoit
    Rousseau, Erwan
    Taji, Behrouz
    [J]. JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2019, 6 : 1 - 18
  • [4] Generalized hyperbolicity in singular spacetimes
    Clarke, CJS
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (04) : 975 - 984
  • [5] Generalized hyperbolicity in singular spacetimes
    Clarke, C. J. S.
    [J]. Classical and Quantum Gravity, 15 (04):
  • [6] A Characterization of Singular-Hyperbolicity
    Morales, C. A.
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2016, 65 (02) : 353 - 369
  • [7] Prevalence of hyperbolicity for complex singular cycles
    Labarca R.
    San Martin B.
    [J]. Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society, 1997, 28 (2) : 343 - 362
  • [8] Singular Hyperbolicity of Star Flows on Surfaces
    Sheng Zhi ZHU
    [J]. ActaMathematicaSinica, 2015, 31 (09) : 1415 - 1423
  • [9] ON THE SINGULAR-HYPERBOLICITY OF STAR FLOWS
    Shi, Yi
    Gan, Shaobo
    Wen, Lan
    [J]. JOURNAL OF MODERN DYNAMICS, 2014, 8 (02) : 191 - 219
  • [10] Singular Hyperbolicity of Star Flows on Surfaces
    Sheng Zhi ZHU
    [J]. Acta Mathematica Sinica,English Series, 2015, (09) : 1415 - 1423