Analytically exact spiral scheme for generating uniformly distributed points on the unit sphere
被引:32
|
作者:
Koay, Cheng Guan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin, Dept Med Phys, Sch Med & Publ Hlth, Wisconsin Inst Med Res WIMR 1161, Madison, WI 53705 USAUniv Wisconsin, Dept Med Phys, Sch Med & Publ Hlth, Wisconsin Inst Med Res WIMR 1161, Madison, WI 53705 USA
Koay, Cheng Guan
[1
]
机构:
[1] Univ Wisconsin, Dept Med Phys, Sch Med & Publ Hlth, Wisconsin Inst Med Res WIMR 1161, Madison, WI 53705 USA
Uniform distribution on sphere;
Deterministic scheme;
Fixed-point formula;
Analytically exact spiral scheme;
DIFFUSION;
D O I:
10.1016/j.jocs.2010.12.003
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
The problem of constructing a set of uniformly distributed points on the surface of a sphere, also known as the Thomson problem, has a long and interesting history, which dates back to J.J. Thomson in 1904. A particular variant of the Thomson problem that is of great importance to biomedical imaging is that of generating a nearly uniform distribution of points on the sphere via a deterministic scheme. Although the point set generated through the minimization of electrostatic potential is the gold standard, minimizing the electrostatic potential of one thousand points (or charges) or more remains a formidable task. Therefore, a deterministic scheme capable of generating efficiently and accurately a set of uniformly distributed points on the sphere has an important role to play in many scientific and engineering applications, not the least of which is to serve as an initial solution (with random perturbation) for the electrostatic repulsion scheme. In this work, we will present an analytically exact spiral scheme for generating a highly uniform distribution of points on the unit sphere. (C) 2010 Elsevier B.V. All rights reserved.
机构:
Univ Wisconsin, Sch Med & Publ Hlth, Dept Med Phys, WIMR 1161, Madison, WI 53705 USAUniv Wisconsin, Sch Med & Publ Hlth, Dept Med Phys, WIMR 1161, Madison, WI 53705 USA
机构:
Univ Wisconsin, Sch Med & Publ Hlth, Dept Med Phys, WIMR 1161, Madison, WI 53705 USAUniv Wisconsin, Sch Med & Publ Hlth, Dept Med Phys, WIMR 1161, Madison, WI 53705 USA
机构:Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
Yang, ZH
Pang, WK
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
Pang, WK
Hou, SH
论文数: 0引用数: 0
h-index: 0
机构:Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
Hou, SH
Leung, F
论文数: 0引用数: 0
h-index: 0
机构:Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China