A Machine Learning Approach to Predict Volatile Substance Abuse for Drug Risk Analysis

被引:0
|
作者
Nath, Priyanka [1 ]
Kilam, Sumran [1 ]
Swetapadma, Aleena [1 ]
机构
[1] KIIT Univ, Sch Comp Engn, Bhubaneswar, Orissa, India
关键词
Drugs; VSA; Machine learning; Neural Network; PERSONALITY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work a machine learning approach is proposed for prediction of volatile substance abuse. Machine learning technique used in this work is artificial neural networks (ANN). Two ANN modules are designed, ANN-D to predict whether a person is using VSA or not and ANN-C to predict the time of use. Input features used are age, gender, country, ethnicity, education, neuroticism, openness to experience, extraversion, agreeableness, conscientiousness, impulsiveness, sensation seeking etc. Input features are given to the ANN-Dmodule to predict if volatile substance abuse (VSA) has been done by the person or not. ANN-C module predicts the use of VSA in terms of time such as day, week, month, year, decade, beforea decade, etc. The accuracy of the ANN-D module is found to be 81% and ANN-C module is 71.9%. Hence the proposed method can be used for drug analysis to some extent.
引用
收藏
页码:255 / 258
页数:4
相关论文
共 50 条
  • [1] Psychosocial Factors Predict the Level of Substance Craving of People with Drug Addiction: A Machine Learning Approach
    Gong, Hua
    Xie, Chuyin
    Yu, Chengfu
    Sun, Nan
    Lu, Hong
    Xie, Ying
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (22)
  • [2] Volatile substance and other drug abuse inhalation in Spain
    Ramón, MF
    Ballesteros, S
    Martinez-Arrieta, R
    Jorrecilla, JM
    Cabrera, J
    [J]. JOURNAL OF TOXICOLOGY-CLINICAL TOXICOLOGY, 2003, 41 (07): : 931 - 936
  • [3] A Machine Learning Model for Predicting Individual Substance Abuse with Associated Risk-Factors
    Islam U.I.
    Haque E.
    Alsalman D.
    Islam M.N.
    Moni M.A.
    Sarker I.H.
    [J]. Annals of Data Science, 2023, 10 (06) : 1607 - 1634
  • [4] Predictors of Illicit Substance Abuse/Dependence During Young Adulthood: A Machine Learning Approach
    Cardoso, Taiane
    Rakovski, Coral
    Ballester, Pedro
    Montezano, Bruno Braga
    de Mattos Souza, Luciano Dias
    Jansen, Karen
    da Silva, Ricardo Azevedo
    Mondin, Thaise Campos
    Pedrotti, Fernanda
    de Boni, Raquel Brandini
    Frey, Benicio
    Kapczinski, Flavio
    [J]. BIOLOGICAL PSYCHIATRY, 2022, 91 (09) : S91 - S92
  • [5] Predictors of illicit substance abuse/dependence during young adulthood: A machine learning approach
    Rakovski, Coral
    Ballester, Pedro L.
    Montezano, Bruno Braga
    Souza, Luciano Dias de Mattos
    Jansen, Karen
    Silva, Ricardo Azevedo da
    Mondin, Thaise Campos
    Moreira, Fernanda Pedrotti
    De Boni, Raquel Brandini
    Frey, Benicio N.
    Kapczinski, Flavio
    Cardoso, Taiane de Azevedo
    [J]. JOURNAL OF PSYCHIATRIC RESEARCH, 2023, 157 : 168 - 173
  • [6] Adolescent substance abuse: A simplified approach to drug testing
    Ahrendt, DM
    Miller, MA
    [J]. PEDIATRIC ANNALS, 2005, 34 (12): : 956 - 963
  • [7] Machine learning to predict cardiovascular risk
    Quesada, Jose A.
    Lopez-Pineda, Adriana
    Gil-Guillen, Vicente F.
    Durazo-Arvizu, Ramon
    Orozco-Beltran, Domingo
    Lopez-Domenech, Angela
    Carratala-Munuera, Concepcion
    [J]. INTERNATIONAL JOURNAL OF CLINICAL PRACTICE, 2019, 73 (10)
  • [8] The correlates of substance abuse and dependence among adolescents at high risk for drug abuse
    Sussman, S
    Dent, CW
    Galaif, ER
    [J]. JOURNAL OF SUBSTANCE ABUSE, 1997, 9 : 241 - 255
  • [9] Effectiveness of a universal drug abuse prevention approach for youth at high risk for substance use initiation
    Griffin, KW
    Botvin, GJ
    Nichols, TR
    Doyle, MM
    [J]. PREVENTIVE MEDICINE, 2003, 36 (01) : 1 - 7
  • [10] Parental substance use disorder and the risk of adolescent drug abuse: an event history analysis
    Hoffmann, JP
    Cerbone, FG
    [J]. DRUG AND ALCOHOL DEPENDENCE, 2002, 66 (03) : 255 - 264