Identification of older patients at risk in the ED using administrative data: predictive validity of the Dynamic Silver Code in the AIDEA study

被引:0
|
作者
Balzi, D. [5 ]
Tonarelli, F. [1 ]
Barghini, E. [1 ]
Fiordelli, I. [1 ]
Giannini, I. [1 ]
Gurrera, T. [1 ]
Latini, E. [1 ]
Lorenzi, C. [1 ]
Benvenuti, E. [2 ]
Gabbani, L. [3 ]
Ruggiano, G. [4 ]
Ungar, A. [1 ]
Di Bari, M. [1 ]
机构
[1] Univ Florence, Clin & Expt Med, Florence, Italy
[2] SM Annunziata Hosp, Unit Geriatr, Bagno A Ripoli, FI, Italy
[3] AOU Careggi, Unit Geriatr, Florence, Italy
[4] SM Annunziata Hosp, Emergency Dept, Bagno A Ripoli, FI, Italy
[5] Cent Tuscany Local Healthcare Unit, Epidemiol Unit, Florence, Italy
关键词
D O I
暂无
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
A237
引用
收藏
页码:S91 / S91
页数:1
相关论文
共 24 条
  • [1] Identification of patients at risk older in the ED using administrative data: concurrent validity of the Dynamic Silver Code in the AIDEA study
    Di Bari, M.
    Tonarelli, F.
    Roberts, A.
    Barghini, E.
    Fiordelli, I.
    Nreu, B.
    Benvenuti, E.
    Gabbani, L.
    Grifoni, S.
    Ungar, A.
    Balzi, D.
    JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2018, 66 : S91 - S91
  • [2] Screening for a geriatric risk profile in older cancer patients: a comparative study of the predictive validity of three screening tools
    Kenis, C.
    Schuermans, H.
    Van Cutsem, E.
    Verhoef, G.
    Vansteenkiste, J.
    Vergote, I.
    Schoffski, P.
    Milisen, K.
    Flamaing, J.
    Wildiers, H.
    CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, 2009, 72 : S22 - S22
  • [3] The Silver Code, Based on Administrative Data, Predicts Functional Status of Hospitalized Patients: Preliminary Results from the CAPE HORN Study
    Mello, A. M.
    Rubbieri, G.
    Mengoni, M.
    Manforti, V.
    Balzi, D.
    Sati, L.
    Sacco, F. C.
    Di Meo, M. L.
    Cavallini, M.
    Di Serio, C.
    Marchionni, N.
    Di Bari, M.
    JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2014, 62 : S192 - S192
  • [4] Development and validation of a predictive model to identify patients at risk of severe COPD exacerbations using administrative claims data
    Annavarapu, Srinivas
    Goldfarb, Seth
    Gelb, Melissa
    Moretz, Chad
    Renda, Andrew
    Kaila, Shuchita
    INTERNATIONAL JOURNAL OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE, 2018, 13 : 2121 - 2130
  • [5] Comorbidity information in older patients at an emergency visit: self-report vs. administrative data had poor agreement but similar predictive validity
    Susser, Stephanie R.
    McCusker, Jane
    Belzile, Eric
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 2008, 61 (05) : 511 - 515
  • [6] Novel screening metric for the identification of at-risk peripheral artery disease patients using administrative claims data
    Bali, Vishal
    Yermilov, Irina
    Coutts, Kayla
    Legorreta, Antonio P.
    VASCULAR MEDICINE, 2016, 21 (01) : 33 - 40
  • [7] Identification of older hospitalised patients at risk for functional decline, a study to compare the predictive values of three screening instruments
    Hoogerduijn, Jita G.
    Schuurmans, Marieke J.
    Korevaar, Johanna C.
    Buurman, Bianca M.
    de Rooij, Sophia E.
    JOURNAL OF CLINICAL NURSING, 2010, 19 (9-10) : 1219 - 1225
  • [8] Rehospitalisation risk by hypnotics class in older patients with heart failure: a cohort study utilizing administrative claims data in Japan
    Saito, Tomoyuki
    Nojiri, Shuko
    Naito, Ryo
    Kasai, Takatoshi
    OPEN HEART, 2024, 11 (02):
  • [9] Dementia and patient outcomes after hip surgery in older patients: A retrospective observational study using nationwide administrative data in Japan
    Morioka, Noriko
    Moriwaki, Mutsuko
    Tomio, Jun
    Fushimi, Kiyohide
    Ogata, Yasuko
    PLOS ONE, 2021, 16 (04):
  • [10] Predictive Modeling of the Hospital Readmission Risk from Patients’ Claims Data Using Machine Learning: A Case Study on COPD
    Xu Min
    Bin Yu
    Fei Wang
    Scientific Reports, 9