Nonlinear development of stimulated Raman scattering from electrostatic modes excited by self-consistent non-Maxwellian velocity distributions

被引:42
|
作者
Yin, L
Daughton, W
Albright, BJ
Bezzerides, B
DuBois, DF
Kindel, JM
Vu, HX
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[3] Univ Calif San Diego, La Jolla, CA 92093 USA
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 02期
关键词
D O I
10.1103/PhysRevE.73.025401
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The parametric coupling involving backward stimulated scattering of a laser and electron beam acoustic modes (BAM) is described as observed in particle-in-cell (PIC) simulations. The BAM modes evolve from Langmuir waves (LW) as the electron velocity distribution is nonlinearly modified to be non-Maxwellian by backward stimulated Raman scattering (BSRS). With a marginal damping rate, BAM can be easily excited and allow an extended chirping in frequency to occur as later SRS pulses encounter modified distributions. Coincident with the emergence of this non-Maxwellian distribution is a rapid increase in BSRS reflectivities with laser intensities. Both the reflectivity scaling with laser intensity and the observed spectral features from PIC simulations are consistent with recent Trident experiments.
引用
收藏
页数:4
相关论文
共 17 条
  • [1] Stimulated Raman scattering in non-Maxwellian plasmas
    Bychenkov, VY
    Rozmus, W
    Tikhonchuk, VT
    PHYSICS OF PLASMAS, 1997, 4 (05) : 1481 - 1483
  • [2] NON-MAXWELLIAN ELECTRON VELOCITY DISTRIBUTIONS OBSERVED WITH THOMSON SCATTERING IN THE TORTUR TOKAMAK
    VANLAMMEREN, ACAP
    BARTH, CJ
    VANEST, QC
    SCHULLER, FC
    NUCLEAR FUSION, 1992, 32 (04) : 655 - 665
  • [3] LIGHT SCATTERING FROM PLASMAS WITH A NON-MAXWELLIAN VELOCITY DISTRIBUTION
    KEGEL, WH
    PLASMA PHYSICS, 1970, 12 (05): : 295 - +
  • [4] Detecting non-Maxwellian electron velocity distributions at JET by high resolution Thomson scattering
    Beausang, K. V.
    Prunty, S. L.
    Scannell, R.
    Beurskens, M. N.
    Walsh, M. J.
    de La Luna, E.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (03):
  • [5] SELF-CONSISTENT TRANSFORMATION OF BREMSSTRAHLUNG TO MONOCHROMATIC PHOTONEUTRON MEAN ENERGIES OF NON-MAXWELLIAN NEUTRON-SPECTRA
    KOCH, R
    CRAWFORD, DM
    BOTTCHER, K
    THIES, HH
    AUSTRALIAN JOURNAL OF PHYSICS, 1973, 26 (02): : 117 - 121
  • [6] Current Sheet in a non-Maxwellian collisionless plasma: Self-consistent theory, simulation, and comparison with spacecraft observations
    Kh. V. Malova
    L. M. Zelenyi
    O. V. Mingalev
    I. V. Mingalev
    V. Yu. Popov
    A. V. Artemyev
    A. A. Petrukovich
    Plasma Physics Reports, 2010, 36 : 841 - 858
  • [7] Current Sheet in a non-Maxwellian collisionless plasma: Self-consistent theory, simulation, and comparison with spacecraft observations
    Malova, Kh. V.
    Zelenyi, L. M.
    Mingalev, O. V.
    Mingalev, I. V.
    Popov, V. Yu.
    Artemyev, A. V.
    Petrukovich, A. A.
    PLASMA PHYSICS REPORTS, 2010, 36 (10) : 841 - 858
  • [8] INCOHERENT RADAR BACKSCATTER FROM NON-MAXWELLIAN ION VELOCITY DISTRIBUTIONS IN AURORAL REGION
    VENKATRAMAN, RS
    STMAURICE, JP
    ONG, RSB
    NAGY, AF
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1978, 59 (04): : 344 - 344
  • [9] Influence of non-Maxwellian velocity distributions during ECRH and ECCD on electron temperature measurements by Thomson scattering
    Zhuang, G
    Behn, R
    Klimanov, I
    Nikkola, P
    Sauter, O
    PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 (09) : 1539 - 1558
  • [10] Self-consistent full-wave and Fokker-Planck calculations for ion cyclotron heating in non-Maxwellian plasmas
    Jaeger, E. F.
    Berry, L. A.
    Ahern, S. D.
    Barrett, R. F.
    Batchelor, D. B.
    Carter, M. D.
    D'Azevedo, E. F.
    Moore, R. D.
    Harvey, R. W.
    Myra, J. R.
    D'Ippolito, D. A.
    Dumont, R. J.
    Phillips, C. K.
    Okuda, H.
    Smithe, D. N.
    Bonoli, P. T.
    Wright, J. C.
    Choi, M.
    PHYSICS OF PLASMAS, 2006, 13 (05)