TIME DEPENDENT PERTURBATION IN A NON-AUTONOMOUS NON-CLASSICAL PARABOLIC EQUATION

被引:8
|
作者
Rivero, Felipe [1 ]
机构
[1] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, E-41080 Seville, Spain
来源
关键词
Evolution processes; pullback attractors; non-autonomous parabolic equations; time dependent perturbation; non-autonomous dynamical systems; attractors structure; continuity of attractors; ATTRACTORS;
D O I
10.3934/dcdsb.2013.18.209
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
n this paper we study the existence and characterization of a pullback attractor for a non-autonomous non-classical parabolic equation of the form {u(t) - gamma(t)Delta u(t) - Delta u = f(u) in Omega, u = 0 on partial derivative Omega (1) in a sufficiently smooth bounded domain Omega subset of R-n with f and gamma satisfying some suitable natural conditions. We prove the well posedness of this model and the existence of a pullback attractor. We show that this pullback attractor is characterized as the union of unstable sets of the associated equilibria and that this characterization is stable under time dependent perturbation of the nonlinearity.
引用
收藏
页码:209 / 221
页数:13
相关论文
共 50 条
  • [1] ASYMPTOTIC BEHAVIOUR OF A NON-CLASSICAL AND NON-AUTONOMOUS DIFFUSION EQUATION CONTAINING SOME HEREDITARY CHARACTERISTIC
    Caraballo, Tomas
    Marquez-Duran, Antonio M.
    Rivero, Felipe
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (05): : 1817 - 1833
  • [2] Continuity of non-autonomous attractors for hyperbolic perturbation of parabolic equations
    Freitas, Mirelson M.
    Kalita, Piotr
    Langa, Jose A.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (03) : 1886 - 1945
  • [3] NON-AUTONOMOUS PARABOLIC BIFURCATION
    Vivas, Liz
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (06) : 2525 - 2537
  • [4] On the Random Non-Autonomous Logistic Equation with Time-Dependent Coefficients
    Calatayud, J.
    Cortes, J-C
    Dorini, F. A.
    [J]. FLUCTUATION AND NOISE LETTERS, 2021, 20 (04):
  • [5] A Higher-Order Non-autonomous Semilinear Parabolic Equation
    Belluzi, Maykel
    Bezerra, Flank D. M.
    Nascimento, Marcelo J. D.
    Santos, Lucas A.
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2024, 55 (01):
  • [6] PULLBACK ATTRACTORS FOR A NON-AUTONOMOUS SEMILINEAR DEGENERATE PARABOLIC EQUATION
    Li, Xin
    Sun, Chunyou
    Zhou, Feng
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2016, 47 (02) : 511 - 528
  • [7] The well-posedness of a parabolic non-autonomous semilinear equation
    Fkirine, Mohamed
    Hadd, Said
    [J]. IFAC PAPERSONLINE, 2022, 55 (12): : 198 - 201
  • [8] A Higher-Order Non-autonomous Semilinear Parabolic Equation
    Maykel Belluzi
    Flank D. M. Bezerra
    Marcelo J. D. Nascimento
    Lucas A. Santos
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2024, 55
  • [9] PERSISTENCE AND EXTINCTION OF A NON-AUTONOMOUS LOGISTIC EQUATION WITH RANDOM PERTURBATION
    Liu, Meng
    Wang, Ke
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [10] NON-AUTONOMOUS CLASSICAL SCATTERING
    ASTABURUAGA, MA
    FERNANDEZ, C
    CORTES, VH
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1988, 134 (02) : 471 - 481