A COMPARISON OF EXPLICIT RUNGE-KUTTA METHODS

被引:0
|
作者
Walters, Stephen J. [1 ]
Turner, Ross J. [1 ]
Forbes, Lawrence K. [1 ]
机构
[1] Univ Tasmania, Math Dept, Hobart, Tas 7005, Australia
来源
ANZIAM JOURNAL | 2022年 / 64卷 / 03期
关键词
numerical methods; Runge-Kutta method; differential equations;
D O I
10.1017/S1446181122000141
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recent higher-order explicit Runge-Kutta methods are compared with the classic fourth-order (RK4) method in long-term integration of both energy-conserving and lossy systems. By comparing quantity of function evaluations against accuracy for systems with and without known solutions, optimal methods are proposed. For a conservative system, we consider positional accuracy for Newtonian systems of two or three bodies and total angular momentum for a simplified Solar System model, over moderate astronomical timescales (tens of millions of years). For a nonconservative system, we investigate a relativistic two-body problem with gravitational wave emission. We find that methods of tenth and twelfth order consistently outperform lower-order methods for the systems considered here.
引用
收藏
页码:227 / 249
页数:23
相关论文
共 50 条
  • [1] Explicit adaptive Runge-Kutta methods
    L. M. Skvortsov
    [J]. Mathematical Models and Computer Simulations, 2012, 4 (1) : 82 - 91
  • [2] Explicit stabilized Runge-Kutta methods
    L. M. Skvortsov
    [J]. Computational Mathematics and Mathematical Physics, 2011, 51 : 1153 - 1166
  • [3] Explicit stabilized Runge-Kutta methods
    Skvortsov, L. M.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2011, 51 (07) : 1153 - 1166
  • [4] ON THE ECONOMIZATION OF EXPLICIT RUNGE-KUTTA METHODS
    SOMMEIJER, BP
    [J]. APPLIED NUMERICAL MATHEMATICS, 1986, 2 (01) : 57 - 68
  • [5] Symmetries of explicit Runge-Kutta methods
    Sergey Khashin
    [J]. Numerical Algorithms, 2014, 65 : 597 - 609
  • [6] Symmetries of explicit Runge-Kutta methods
    Khashin, Sergey
    [J]. NUMERICAL ALGORITHMS, 2014, 65 (03) : 597 - 609
  • [7] STABILITY OF EXPLICIT RUNGE-KUTTA METHODS
    SHAMPINE, LF
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1984, 10 (06) : 419 - 432
  • [8] Variational formulations for explicit Runge-Kutta Methods
    Munoz-Matute, Judit
    Pardo, David
    Calo, Victor M.
    Alberdi, Elisabete
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2019, 165 : 77 - 93
  • [9] Composite Group of Explicit Runge-Kutta Methods
    Abd Hamid, Fatin Nadiah
    Rabiei, Faranak
    Ismail, Fudziah
    [J]. INNOVATIONS THROUGH MATHEMATICAL AND STATISTICAL RESEARCH: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS (ICMSS2016), 2016, 1739
  • [10] On the preservation of invariants by explicit Runge-Kutta methods
    Calvo, M.
    Hernandez-Abreu, D.
    Montijano, J. I.
    Randez, L.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (03): : 868 - 885