Temperature-dependent zero-field splittings in graphene

被引:4
|
作者
Bray, C. [1 ]
Maussang, K. [2 ]
Consejo, C. [1 ]
Delgado-Notario, J. A. [3 ]
Krishtopenko, S. [1 ]
Gebert, S. [2 ]
Yahniuk, I. [4 ,5 ]
Ruffenach, S. [1 ]
Dinar, K. [1 ]
Eroms, J. [5 ]
Indykiewicz, K. [6 ]
Jouault, B. [1 ]
Torres, J. [2 ]
Meziani, Y. M. [3 ]
Knap, W. [4 ]
Yurgens, A. [7 ]
Ganichev, S. D. [4 ,5 ]
Teppe, F. [1 ,4 ]
机构
[1] Univ Montpellier, UMR 5221, CNRS, L2C, Montpellier, France
[2] Univ Montpellier, IES, CNRS, UMR 5214, Montpellier, France
[3] Univ Salamanca, Nanotechnol Grp, USAL Nanolab, Salamanca 37008, Spain
[4] Polish Acad Sci, Inst High Pressure Phys, CENTERA Labs, 29 37 Sokolowska Str, Warsaw, Poland
[5] Univ Regensburg, Terahertz Ctr, D-93040 Regensburg, Germany
[6] Wroclaw Univ Sci & Technol, Fac Elect Photon & Microsyst, PL-50372 Wroclaw, Poland
[7] Chalmers Univ Technol, Dept Microtechnol & Nanosci, SE-41296 Gothenburg, Sweden
基金
欧盟地平线“2020”;
关键词
THERMAL-EXPANSION COEFFICIENT; ELECTRON-SPIN-RESONANCE; TERAHERTZ DETECTION; PERFORMANCE;
D O I
10.1103/PhysRevB.106.245141
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Graphene is a quantum spin Hall insulator with a 45 mu eV-wide nontrivial topological gap induced by the intrinsic spin-orbit coupling. Even though this zero-field spin splitting is weak, it makes graphene an attractive candidate for applications in quantum technologies, given the resulting long spin-relaxation time. On the other side, the staggered sublattice potential, resulting from the coupling of graphene with its boron nitride substrate, compensates intrinsic spin-orbit coupling and decreases the nontrivial topological gap, which may lead to the phase transition into trivial band insulator state. In this work, we present extensive experimental studies of the zero-field splittings in monolayer and bilayer graphene in a temperature range 2-12 K by means of subterahertz photoconductivity-based electron spin-resonance technique. Surprisingly, we observe a decrease of the spin splittings with increasing temperature. We discuss the origin of this phenomenon by considering possible physical mechanisms likely to induce a temperature dependence of the spin-orbit coupling. These include the difference in the expansion coefficients between the graphene and the boron nitride substrate or the metal contacts, the electron-phonon interactions, and the presence of a magnetic order at low temperature. Our experimental observation expands knowledge about the nontrivial topological gap in graphene.
引用
收藏
页数:12
相关论文
共 50 条
  • [2] COMMENT ON CALCULATION OF ZERO-FIELD SPLITTINGS
    MCDOWELL, RS
    JOURNAL OF CHEMICAL PHYSICS, 1961, 34 (03): : 1065 - &
  • [4] Temperature-dependent zero-field splitting in a copper(II) dimer studied by EPR
    Fedin, Matvey V.
    Zhilina, Ekaterina F.
    Chizhov, Dmitrii L.
    Apolonskaya, Inna A.
    Aleksandrov, Grigory G.
    Kiskin, Mikhail A.
    Sidorov, Aleksei A.
    Bogomyakov, Artem S.
    Romanenko, Galina V.
    Eremenko, Igor L.
    Novotortsev, Vladimir M.
    Charushin, Valery N.
    DALTON TRANSACTIONS, 2013, 42 (13) : 4513 - 4521
  • [5] ZERO-FIELD SPLITTINGS OF IRON COMPLEXES OF TRANSFERRINS
    PINKOWITZ, RA
    AISEN, P
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1972, 247 (23) : 7830 - +
  • [6] STUDIES OF ZERO-FIELD SPLITTINGS IN AROMATIC MOLECULES
    GODFREY, M
    KERN, CW
    KARPLUS, M
    JOURNAL OF CHEMICAL PHYSICS, 1966, 44 (12): : 4459 - &
  • [7] ZERO-FIELD SPLITTINGS IN PYRIDINE-DERIVATIVES
    MOTTEN, AG
    DAVIDSON, ER
    KWIRAM, AL
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1977, 173 (MAR20): : 211 - 211
  • [8] ELECTRON-SPIN-RESONANCE STUDIES OF TEMPERATURE-DEPENDENT ZERO-FIELD SPLITTING IN YANGS BIRADICAL
    MUKAI, K
    ISHIZU, K
    NAKAHARA, M
    DEGUCHI, Y
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 1980, 53 (11) : 3363 - 3364
  • [9] EFFECT OF FLUORINE SUBSTITUTION ON ZERO-FIELD SPLITTINGS OF NAPHTHALENE
    SZERENYI, PA
    SHIA, L
    CHEMICAL PHYSICS LETTERS, 1976, 39 (03) : 593 - 595
  • [10] CALCULATIONS OF ZERO-FIELD SPLITTINGS IN PYRIDINE-DERIVATIVES
    MOTTEN, AG
    DAVIDSON, ER
    KWIRAM, AL
    JOURNAL OF CHEMICAL PHYSICS, 1981, 75 (06): : 2603 - 2607