Beyond Traditional Kernels: Classification in Two Dissimilarity-Based Representation Spaces

被引:24
|
作者
Pekalska, Elzbieta [1 ]
Duin, Robert P. W. [2 ]
机构
[1] Univ Manchester, Sch Comp Sci, Manchester M13 9PL, Lancs, England
[2] Delft Univ Technol, Fac Elect Engn Math & Comp Sci, NL-2628 CN Delft, Netherlands
基金
英国工程与自然科学研究理事会;
关键词
Classifier design and evaluation; indefinite kernels; similarity measures; statistical learning;
D O I
10.1109/TSMCC.2008.2001687
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Proximity captures the degree of similarity between examples and is thereby fundamental in learning. Learning from pairwise proximity data usually relies on either kernel methods for specifically designed kernels or the nearest neighbor (NN) rule. Kernel methods are powerful, but often cannot handle arbitrary proximities without necessary corrections. The NN rule can work well in such cases, but suffers from local decisions. The aim of this paper is to provide an indispensable explanation and insights about two simple yet powerful alternatives when neither conventional kernel methods nor the NN rule can perform best. These strategies use two proximity-based representation spaces (RSs) in which accurate classifiers are trained on all training objects and demand comparisons to a small set of prototypes. They can handle all meaningful dissimilarity measures, including non-Euclidean and nonmetric ones. Practical examples illustrate that these RSs can be highly advantageous in supervised learning. Simple classifiers built there tend to outperform the NN rule. Moreover, computational complexity may be controlled. Consequently, these approaches offer an appealing alternative to learn from proximity data for which kernel methods cannot directly be applied, are too costly or impractical, while the NN rule leads to noisy results.
引用
收藏
页码:729 / 744
页数:16
相关论文
共 49 条
  • [1] Dissimilarity-based representation for radiomics applications
    Cao, Hongliu
    Bernard, Simon
    Heutte, Laurent
    Sabourin, Robert
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE (ICPRAI 2018), 2018, : 53 - 58
  • [2] DISSIMILARITY-BASED BIPOLAR SUPERVISED CLASSIFICATION
    Tinguaro Rodriguez, J.
    Montero, Javier
    Vitoriano, Begona
    UNCERTAINTY MODELING IN KNOWLEDGE ENGINEERING AND DECISION MAKING, 2012, 7 : 894 - 899
  • [3] Dissimilarity-based classification for vectorial representations
    Pekalska, Elzbieta
    Duin, Robert P. W.
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS, 2006, : 137 - +
  • [4] Dissimilarity-based classification of chromatographic profiles
    António V. Sousa
    Ana Maria Mendonça
    Aurélio Campilho
    Pattern Analysis and Applications, 2008, 11 : 409 - 423
  • [5] Dissimilarity-based classification of chromatographic profiles
    Sousa, Antonio V.
    Mendonca, Ana Maria
    Campilho, Aurelio
    PATTERN ANALYSIS AND APPLICATIONS, 2008, 11 (3-4) : 409 - 423
  • [6] Enhancing the dissimilarity-based classification of birdsong recordings
    Francisco Ruiz-Munoz, Jose
    Castellanos-Dominguez, German
    Orozco-Alzate, Mauricio
    ECOLOGICAL INFORMATICS, 2016, 33 : 75 - 84
  • [7] Dissimilarity-Based Classification of Anatomical Tree Structures
    Sorensen, Lauge
    Lo, Pechin
    Dirksen, Asger
    Petersen, Jens
    de Bruijne, Marleen
    INFORMATION PROCESSING IN MEDICAL IMAGING, 2011, 6801 : 475 - 485
  • [8] A dissimilarity-based imbalance data classification algorithm
    Zhang, Xueying
    Song, Qinbao
    Wang, Guangtao
    Zhang, Kaiyuan
    He, Liang
    Jia, Xiaolin
    APPLIED INTELLIGENCE, 2015, 42 (03) : 544 - 565
  • [9] Dissimilarity-based classification of spectra:: computational issues
    Paclík, P
    Duin, RPW
    REAL-TIME IMAGING, 2003, 9 (04) : 237 - 244
  • [10] Hierarchical age estimation with dissimilarity-based classification
    Kohli, Sharad
    Prakash, Surya
    Gupta, Phalguni
    NEUROCOMPUTING, 2013, 120 : 164 - 176