Spatio-Temporal Correlation Tensors Reveal Functional Structure in Human Brain

被引:82
|
作者
Ding, Zhaohua [1 ,2 ,3 ,4 ,5 ]
Newton, Allen T. [1 ,6 ]
Xu, Ran [1 ,2 ]
Anderson, Adam W. [1 ,2 ,3 ]
Morgan, Victoria L. [1 ,2 ,3 ]
Gore, John C. [1 ,2 ,3 ,5 ,7 ,8 ]
机构
[1] Vanderbilt Univ, Inst Imaging Sci, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Dept Radiol & Radiol Sci, Nashville, TN 37235 USA
[3] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37235 USA
[4] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA
[5] Vanderbilt Univ, Chem & Phys Biol Program, Nashville, TN 37235 USA
[6] Vanderbilt Univ, Monroe Carell Jr Childrens Hosp, Nashville, TN 37235 USA
[7] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[8] Vanderbilt Univ, Dept Mol Physiol & Biophys, Nashville, TN 37232 USA
来源
PLOS ONE | 2013年 / 8卷 / 12期
关键词
INDEPENDENT COMPONENT ANALYSIS; CONNECTIVITY; FMRI; MRI; FLUCTUATIONS; ACTIVATION; CORTEX; DTI;
D O I
10.1371/journal.pone.0082107
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Resting state functional magnetic resonance imaging (fMRI) has been commonly used to measure functional connectivity between cortical regions, while diffusion tensor imaging (DTI) can be used to characterize structural connectivity of white matter tracts. In principle combining resting state fMRI and DTI data could allow characterization of structure-function relations of distributed neural networks. However, due to differences in the biophysical origins of their signals and in the tissues to which they apply, there has been no direct integration of these techniques to date. We demonstrate that MRI signal variations and power spectra in a resting state are largely comparable between gray matter and white matter, that there are temporal correlations of fMRI signals that persist over long distances within distinct white matter structures, and that neighboring intervoxel correlations of low frequency resting state signals showed distinct anisotropy in many regions. These observations suggest that MRI signal variations from within white matter in a resting state may convey similar information as their corresponding fluctuations of MRI signals in gray matter. We thus derive a local spatio-temporal correlation tensor which captures directional variations of resting-state correlations and which reveals distinct structures in both white and gray matter. This novel concept is illustrated with in vivo experiments in a resting state, which demonstrate the potential of the technique for mapping the functional structure of neural networks and for direct integration of structure-function relations in the human brain.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Human action recognition using Spatio-temporal Histogram of Structure Tensors descriptor
    Abdelhedi, Slim
    Wali, Ali
    Alimi, Adel M.
    [J]. JOURNAL OF INFORMATION ASSURANCE AND SECURITY, 2019, 14 (03): : 78 - 85
  • [2] Spatio-temporal transcriptome of the human brain
    Hyo Jung Kang
    Yuka Imamura Kawasawa
    Feng Cheng
    Ying Zhu
    Xuming Xu
    Mingfeng Li
    André M. M. Sousa
    Mihovil Pletikos
    Kyle A. Meyer
    Goran Sedmak
    Tobias Guennel
    Yurae Shin
    Matthew B. Johnson
    Željka Krsnik
    Simone Mayer
    Sofia Fertuzinhos
    Sheila Umlauf
    Steven N. Lisgo
    Alexander Vortmeyer
    Daniel R. Weinberger
    Shrikant Mane
    Thomas M. Hyde
    Anita Huttner
    Mark Reimers
    Joel E. Kleinman
    Nenad Šestan
    [J]. Nature, 2011, 478 : 483 - 489
  • [3] Spatio-temporal transcriptome of the human brain
    Kang, Hyo Jung
    Kawasawa, Yuka Imamura
    Cheng, Feng
    Zhu, Ying
    Xu, Xuming
    Li, Mingfeng
    Sousa, Andre M. M.
    Pletikos, Mihovil
    Meyer, Kyle A.
    Sedmak, Goran
    Guennel, Tobias
    Shin, Yurae
    Johnson, Matthew B.
    Krsnik, Zeljka
    Mayer, Simone
    Fertuzinhos, Sofia
    Umlauf, Sheila
    Lisgo, Steven N.
    Vortmeyer, Alexander
    Weinberger, Daniel R.
    Mane, Shrikant
    Hyde, Thomas M.
    Huttner, Anita
    Reimers, Mark
    Kleinman, Joel E.
    Sestan, Nenad
    [J]. NATURE, 2011, 478 (7370) : 483 - 489
  • [4] A spatio-temporal decomposition framework for dynamic functional connectivity in the human brain
    Xiao, Jinming
    Uddin, Lucina Q.
    Meng, Yao
    Li, Lei
    Gao, Leying
    Shan, Xiaolong
    Huang, Xinyue
    Liao, Wei
    Chen, Huafu
    Duan, Xujun
    [J]. NEUROIMAGE, 2022, 263
  • [5] Mapping the Spatio-Temporal Functional Coherence in the Resting Brain
    Wang, Ze
    [J]. MULTIMODAL BRAIN IMAGE ANALYSIS AND MATHEMATICAL FOUNDATIONS OF COMPUTATIONAL ANATOMY, 2019, 11846 : 39 - 48
  • [6] Learning a spatio-temporal correlation
    Narain, D.
    Mamassian, P.
    van Beers, R. J.
    Smeets, J. B. J.
    Brenner, E.
    [J]. PERCEPTION, 2012, 41 : 58 - 58
  • [7] STAB: a spatio-temporal cell atlas of the human brain
    Song, Liting
    Pan, Shaojun
    Zhang, Zichao
    Jia, Longhao
    Chen, Wei-Hua
    Zhao, Xing-Ming
    [J]. NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) : D1029 - D1037
  • [8] Entropy quantification of human brain spatio-temporal dynamics
    Pezard, L
    Martinerie, J
    MullerGerking, J
    Varela, FJ
    Renault, B
    [J]. PHYSICA D, 1996, 96 (1-4): : 344 - 354
  • [9] Classification of functional brain images with a spatio-temporal dissimilarity map
    Shinkareva, Svetlana V.
    Ombao, Hernando C.
    Sutton, Bradley P.
    Mohanty, Aprajita
    Miller, Gregory A.
    [J]. NEUROIMAGE, 2006, 33 (01) : 63 - 71
  • [10] Spatio-temporal imaging correlation to measure tissue impedance in the neonatal brain
    Schindler, T.
    Oei, J.
    Welsh, A.
    [J]. ARCHIVES OF DISEASE IN CHILDHOOD-FETAL AND NEONATAL EDITION, 2015, 100 (04): : F348 - F349