Joint elastic and petrophysical inversion using prestack seismic and well log data

被引:7
|
作者
Li, Zhiyong [1 ]
Song, Beibei [1 ]
Zhang, Jiashu [2 ]
Hu, Guangmin [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Commun & Informat Engn, Chengdu 611731, Sichuan, Peoples R China
[2] Southwest Jiaotong Univ, Sichuan Key Lab Signal & Informat Proc, Chengdu 610031, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
deterministic inversion; joint inversion; rock physics; stochastic inversion; BAYESIAN LITHOLOGY/FLUID PREDICTION; STATISTICAL ROCK PHYSICS; PRIOR MODEL; RESERVOIR; POROSITY; SIMULATION;
D O I
10.1071/EG14074
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Seismic inverse problems aim to infer the properties of subsurface geology, such as elastic and petrophysical properties. Existing seismic inversion methods for the joint estimation of these properties are mainly based either on Gassmann theory for prestack seismic data processed with stochastic optimisation techniques or on the Wyllie formula for poststack seismic data processed by deterministic optimisation techniques. The purpose of this study is to develop a strategy for the joint estimation of elastic and petrophysical properties from prestack seismic data based on Gassmann equations with deterministic optimisation techniques. Given poor-quality prestack seismic data, two regularisation parameters are introduced to control the trade-off between fidelity to the data and the smoothness of the solution. An appropriate linearised system of equations for the joint model update is derived from Newton's method, which fits seismic data, the description of the rock physics medium and prior information, simultaneously. We show the preliminary results obtained with the proposed framework for synthetic and real data examples.
引用
收藏
页码:331 / 340
页数:10
相关论文
共 50 条
  • [1] Prestack seismic joint inversion of reservoir elastic and petrophysical parameters using deterministic optimization method
    Li Zhi-Yong
    Qian Feng
    Hu Guang-Min
    He Zhen-Hua
    [J]. CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2015, 58 (05): : 1706 - 1716
  • [2] Prestack seismic facies-controlled joint inversion of reservoir elastic and petrophysical parameters for sweet spot prediction
    Zhang, Sheng
    Huang, Handong
    Li, Huijie
    Wang, Gaofei
    Dong, Yinping
    Luo, Yaneng
    [J]. ENERGY EXPLORATION & EXPLOITATION, 2017, 35 (06) : 767 - 791
  • [3] Petrophysical Joint Inversion of Seismic and Electromagnetic Data
    Yu, Jeongmin
    Byun, Joongmoo
    Seol, Soon Jee
    [J]. GEOPHYSICS AND GEOPHYSICAL EXPLORATION, 2018, 21 (01): : 15 - 25
  • [4] NONLINEAR ELASTIC INVERSION OF PRESTACK MARINE SEISMIC DATA
    ASSOUS, F
    CHALINDAR, B
    COLLINO, F
    [J]. PROCEEDINGS OF THE IEEE, 1989, 77 (06) : 877 - 890
  • [5] Petrophysical seismic inversion conditioned to well-log data: Methods and application to a gas reservoir
    Bosch, Miguel
    Carvajal, Carla
    Rodrigues, Juan
    Torres, Astrid
    Aldana, Milagrosa
    Sierra, Jesus
    [J]. GEOPHYSICS, 2009, 74 (02) : O1 - O15
  • [6] Seismic facies-controlled prestack simultaneous inversion of elastic and petrophysical parameters for favourable reservoir prediction
    Zhang, Sheng
    Huang, Handong
    Zhu, Baoheng
    Li, Huijie
    Zhang, Lihua
    [J]. EXPLORATION GEOPHYSICS, 2018, 49 (05) : 655 - 668
  • [7] Joint petrophysical inversion of electromagnetic and full-waveform seismic data
    Gao, Guozhong
    Abubakar, Aria
    Habashy, Tarek M.
    [J]. GEOPHYSICS, 2012, 77 (03) : WA3 - WA18
  • [8] Prestack seismic inversion for elastic parameters using model-data-driven generative adversarial networks
    Sun, Shuai
    Zhao, Luanxiao
    Chen, Huaizhen
    He, Zhiliang
    Geng, Jianhua
    [J]. GEOPHYSICS, 2023, 88 (02) : M87 - M103
  • [9] Prediction of elastic properties using seismic prestack inversion and neural network analysis
    Mohamed, Islam A.
    El-Mowafy, Hamed Z.
    Fathy, Mohamed
    [J]. INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2015, 3 (02): : T57 - T68
  • [10] Petrophysical properties prediction from prestack seismic data using convolutional neural networks
    Das, Vishal
    Mukerji, Tapan
    [J]. GEOPHYSICS, 2020, 85 (05) : N41 - N55