RESONANCE TRAPPING IN PROTOPLANETARY DISKS. I. COPLANAR SYSTEMS

被引:15
|
作者
Lee, Aaron T. [1 ,2 ]
Thommes, Edward W. [1 ]
Rasio, Frederic A. [1 ]
机构
[1] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
[2] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA
来源
ASTROPHYSICAL JOURNAL | 2009年 / 691卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
celestial mechanics; planetary systems: formation; planetary systems: protoplanetary disks; planets and satellites: general; ECCENTRICITY EVOLUTION; PLANETARY SYSTEMS; TIDAL INTERACTION; DENSITY WAVES; SOLAR NEBULA; MIGRATION; COMPANION; GROWTH; EXCITATION; LINDBLAD;
D O I
10.1088/0004-637X/691/2/1684
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Mean-motion resonances (MMRs) are likely to play an important role both during and after the lifetime of a protostellar gas disk. We study the dynamical evolution and stability of planetary systems containing two giant planets on circular orbits near a 2: 1 resonance and closer. We find that by having the outer planet migrate inward, the two planets can capture into either the 2: 1, 5: 3, or 3: 2 MMR. We use direct numerical integrations of similar to 1000 systems in which the planets are initially locked into one of these resonances and allowed to evolve for up to similar to 10(7) yr. We find that the final eccentricity distribution in systems which ultimately become unstable gives a good fit to observed exoplanets. Next, we integrate similar to 500 two-planet systems in which the outer planet is driven to continuously migrate inward, resonantly capturing the inner planet; the systems are evolved until either instability sets in or the planets reach the star. We find that although the 5: 3 resonance rapidly becomes unstable under migration, the 2: 1 and 3: 2 are very stable. Thus the lack of observed exoplanets in resonances closer than 2: 1, if it continues to hold up, may be a primordial signature of the planet formation process.
引用
收藏
页码:1684 / 1696
页数:13
相关论文
共 50 条
  • [1] Planet shadows in protoplanetary disks. I. Temperature perturbations
    Jang-Condell, Hannah
    [J]. ASTROPHYSICAL JOURNAL, 2008, 679 (01): : 797 - 812
  • [2] Baroclinic vorticity production in protoplanetary disks. I. Vortex formation
    Petersen, Mark R.
    Julien, Keith
    Stewart, Glen R.
    [J]. ASTROPHYSICAL JOURNAL, 2007, 658 (02): : 1236 - 1251
  • [3] LONG-TERM EVOLUTION OF PROTOSTELLAR AND PROTOPLANETARY DISKS. I. OUTBURSTS
    Zhu, Zhaohuan
    Hartmann, Lee
    Gammie, Charles F.
    Book, Laura G.
    Simon, Jacob B.
    Engelhard, Eric
    [J]. ASTROPHYSICAL JOURNAL, 2010, 713 (02): : 1134 - 1142
  • [4] ALMA SURVEY OF LUPUS PROTOPLANETARY DISKS. I. DUST AND GAS MASSES
    Ansdell, M.
    Williams, J. P.
    van der Marel, N.
    Carpenter, J. M.
    Guidi, G.
    Hogerheijde, M.
    Mathews, G. S.
    Manara, C. F.
    Miotello, A.
    Natta, A.
    Oliveira, I.
    Tazzari, M.
    Testi, L.
    van Dishoeck, E. F.
    van Terwisga, S. E.
    [J]. ASTROPHYSICAL JOURNAL, 2016, 828 (01):
  • [5] The chemistry of multiply deuterated molecules in protoplanetary disks. I. The outer disk
    Willacy, K.
    [J]. ASTROPHYSICAL JOURNAL, 2007, 660 (01): : 441 - 460
  • [6] Unlocking CO Depletion in Protoplanetary Disks. I. The Warm Molecular Layer
    Schwarz, Kamber R.
    Bergin, Edwin A.
    Cleeves, L. Ilsedore
    Zhang, Ke
    Oberg, Karin I.
    Blake, Geoffrey A.
    Anderson, Dana
    [J]. ASTROPHYSICAL JOURNAL, 2018, 856 (01):
  • [7] Magnetorotational instability in protoplanetary disks. I. On the global stability of weakly ionized disks with ohmic dissipation
    Sano, T
    Miyama, SM
    [J]. ASTROPHYSICAL JOURNAL, 1999, 515 (02): : 776 - 786
  • [8] Chemistry in protoplanetary disks.
    Herbst, E
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 224 : U309 - U309
  • [9] Planet-driven Spiral Arms in Protoplanetary Disks. I. Formation Mechanism
    Bae, Jaehan
    Zhu, Zhaohuan
    [J]. ASTROPHYSICAL JOURNAL, 2018, 859 (02):
  • [10] Convective Overstability in Radially Global Protoplanetary Disks. I. Pure Gas Dynamics
    Lehmann, Marius
    Lin, Min-Kai
    [J]. ASTROPHYSICAL JOURNAL, 2024, 970 (01):