Erythropoietin pretreatment suppresses inflammation by activating the PI3K/Akt signaling pathway in myocardial ischemia-reperfusion injury

被引:54
|
作者
Ren Rong [1 ]
Xiao Xijun [1 ]
机构
[1] Sichuan Univ, West China Hosp, Dept Cardiac Surg, Chengdu 610041, Sichuan, Peoples R China
关键词
erythropoietin; myocardial ischemia-reperfusion injury; phosphoinositide 3-kinase/protein kinase B; PROTECTS; APOPTOSIS; NEUROPROTECTION; INHIBITION; MECHANISM; RECEPTOR; HEART; MICE;
D O I
10.3892/etm.2015.2534
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Erythropoietin (EPO), a glycoprotein originally known for its important role in the stimulation of erythropoiesis, has recently been shown to have significant protective effects in animal models of kidney and intestinal ischemia-reperfusion injury (IRI). However, the mechanism underlying these protective effects remains unclear. The aim of the current study was to evaluate the effects of EPO on myocardial IRI and to investigate the mechanism underlying these effects. A total of 18 male Sprague Dawley rats were randomly divided into three groups, namely the sham, IRI-saline and IRI-EPO groups. Rats in the IRI-EPO group were administered 5,000 U/kg EPO intraperitoneally 24 h prior to the induction of IRI. IRI was induced by ligating the left descending coronary artery for 30 min, followed by reperfusion for 3 h. Pathological changes in the myocardial tissue were observed and scored. The levels of the proinflammatory cytokines, interleukin (IL) -6, IL-1 beta and tumor necrosis factor (TNF)-alpha, were evaluated in the serum and myocardial tissue. Furthermore, the effects of EPO on phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling and EPO receptor (EPOR) phosphorylation were measured. Pathological changes in the myocardial tissue, increased expression levels of TNF-alpha, IL-6 and IL-1 beta in the myocardium, and increased serum levels of these mediators, as a result of IRI, were significantly decreased by EPO pretreatment. The effects of EPO were found to be associated with the activation of PI3K/Akt signaling, which suppressed the inflammatory responses, following the initiation of EPOR activation by EPO. Therefore, EPO pretreatment was demonstrated to decrease myocardial IRI, which was associated with activation of EPOR, subsequently increasing PI3K/Akt signaling to inhibit the production and release of inflammatory mediators. Thus, the results of the present study indicated that EPO may be useful for preventing myocardial IRI.
引用
收藏
页码:413 / 418
页数:6
相关论文
共 50 条
  • [1] The role of PI3K/AKT signaling pathway in myocardial ischemia-reperfusion injury
    Deng, Rui-ming
    Zhou, Juan
    [J]. INTERNATIONAL IMMUNOPHARMACOLOGY, 2023, 123
  • [2] β-Caryophyllene Pretreatment Alleviates Focal Cerebral Ischemia-Reperfusion Injury by Activating PI3K/Akt Signaling Pathway
    Zhang, Qian
    An, Ruidi
    Tian, Xiaocui
    Yang, Mei
    Li, Minghang
    Lou, Jie
    Xu, Lu
    Dong, Zhi
    [J]. NEUROCHEMICAL RESEARCH, 2017, 42 (05) : 1459 - 1469
  • [3] β-Caryophyllene Pretreatment Alleviates Focal Cerebral Ischemia-Reperfusion Injury by Activating PI3K/Akt Signaling Pathway
    Qian Zhang
    Ruidi An
    Xiaocui Tian
    Mei Yang
    Minghang Li
    Jie Lou
    Lu Xu
    Zhi Dong
    [J]. Neurochemical Research, 2017, 42 : 1459 - 1469
  • [4] TIGAR Ameliorates Pulmonary Ischemia-Reperfusion Injury by Activating PI3K/Akt Signaling Pathway
    Xu, Aiping
    Xia, Xiuli
    Xu, Ting
    Liu, Ruxia
    [J]. JOURNAL OF BIOLOGICAL REGULATORS AND HOMEOSTATIC AGENTS, 2023, 37 (04): : 2031 - 2042
  • [5] Piperine protects against myocardial ischemia/reperfusion injury by activating the PI3K/AKT signaling pathway
    Li, Yun-Peng
    Chen, Zhen
    Cai, Yu-Hua
    [J]. EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2021, 21 (04)
  • [6] Glutamine protects myocardial ischemia-reperfusion injury in rats through the PI3K/Akt signaling pathway
    Cui, Z-H
    Zhang, X-J
    Shang, H-Q
    Wang, X.
    Rong, D.
    [J]. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2020, 24 (01) : 444 - 451
  • [7] Dexmedetomidine alleviates lung ischemia-reperfusion injury in rats by activating PI3K/Akt pathway
    Liang, S.
    Wang, Y.
    Liu, Y.
    [J]. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2019, 23 (01) : 370 - 377
  • [8] Tanshinone IIA protects against myocardial ischemia reperfusion injury by activating the PI3K/Akt/mTOR signaling pathway
    Li, Qiang
    Shen, Li
    Wang, Zhen
    Jiang, Hai-Peng
    Liu, Li-Xia
    [J]. BIOMEDICINE & PHARMACOTHERAPY, 2016, 84 : 106 - 114
  • [9] Syringic acid mitigates myocardial ischemia reperfusion injury by activating the PI3K/Akt/GSK-3β signaling pathway
    Liu, Gen
    Zhang, Bo-fang
    Hu, Qi
    Liu, Xiao-pei
    Chen, Jing
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2020, 531 (02) : 242 - 249
  • [10] Pretreatment With Erythropoietin Attenuates Intestinal Ischemia Reperfusion Injury by Further Promoting PI3K/Akt Signaling Activation
    Kai-Ian, W.
    Si, Z.
    [J]. TRANSPLANTATION PROCEEDINGS, 2015, 47 (06) : 1639 - 1645