Interior W1,p Regularity and Holder Continuity of Weak Solutions to a Class of Divergence Kolmogorov Equations with Discontinuous Coefficients

被引:3
|
作者
Zhu, Maochun [1 ]
Niu, Pengcheng [1 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710129, Peoples R China
基金
中国国家自然科学基金;
关键词
Divergence Kolmogorov equation; regularity; singular integral; locally homogeneous spaces; ULTRAPARABOLIC EQUATIONS; OPERATORS;
D O I
10.1007/s00032-013-0203-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of Kolmogorov equation Lu = Sigma(p0)(i,j=1) partial derivative(xi) (a(ij) (z) partial derivative(xj)u) + Sigma(N)(i,j=1) b(ij)x(i)partial derivative(xj)u - partial derivative(t)u = Sigma(p0)(j=1) partial derivative x(j) F-j (z) in a bounded open domain Omega subset of RN+1, where the coefficients matrix (a (ij) (z)) is symmetric uniformly positive definite on . We obtain interior W (1,p) (1 < p < a) regularity and Holder continuity of weak solutions to the equation under the assumption that coefficients a (ij) (z) belong to the and is a constant matrix such that the frozen operator is hypoelliptic.
引用
收藏
页码:317 / 346
页数:30
相关论文
共 46 条