Behaviour of concrete-filled corrugated steel tubes under axial compression

被引:65
|
作者
Wang, Yuyin [1 ,2 ]
Yang, Ligui [1 ,2 ]
Yang, Hua [1 ,2 ]
Liu, Changyong [1 ,2 ]
机构
[1] Harbin Inst Technol, Minist Educ, Key Lab Struct Dynam Behav & Control, Harbin 150090, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Sch Civil Engn, Harbin 150090, Heilongjiang, Peoples R China
关键词
Concrete-filled corrugated steel tube; Corrugated steel pipe; Confinement mechanism; Steel-tube-confined concrete; HIGH-STRENGTH CONCRETE; STUB COLUMNS; POSTFIRE BEHAVIOR; PERFORMANCE; TESTS; MODEL;
D O I
10.1016/j.engstruct.2018.12.093
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Concrete-filled tubular (CFT) structures are exposed to increasingly complex environments with ever-broadening applications. Anticorrosion maintenance is generally difficult and expensive for established structures exposed to the air. Due to the superior corrosion resistance and the high lateral stiffness of the corrugated steel pipe (CSP), concrete-filled corrugated steel tube (CFCST) is proposed which has the similar working mechanism with the tube confined concrete columns. Such innovative composite member has advantages such as free of maintenance, ease of construction, high load-bearing capacity, good ductility and strong interlocking effect between CSP and concrete. In order to verify the load bearing reliability of concrete-filled corrugated steel tube (CFCST), twenty-one short columns including twelve CFCSTs were tested under axial compression. It was found that the CFCST is a tube confined concrete member and behaves slightly better than tubed-concrete columns. The strain and stress of CSP are discussed in detail to clarify the confinement effect. As well, solid nonlinear finite element models (FEM) were established to investigate the influence of key factors including geometries of CSP and strength of materials, which were summarized in the confinement index. Based on early studies on steel tube confined concrete and the parameter analysis in this paper, a suitable design method to predict the ultimate axial compressive load capacity for CFCST columns is proposed in this paper.
引用
下载
收藏
页码:475 / 495
页数:21
相关论文
共 50 条
  • [1] Behaviour of concrete-filled thin-walled corrugated steel tubes under cyclic axial compression
    Fang, Yong
    Wang, Yuyin
    Zhang, Bing
    Dong, Jucan
    THIN-WALLED STRUCTURES, 2021, 162
  • [2] Experimental behaviour of concrete-filled steel tubes under cyclic axial compression
    Vui Van Cao
    Quoc Dinh Le
    Phuoc Trong Nguyen
    ADVANCES IN STRUCTURAL ENGINEERING, 2020, 23 (01) : 74 - 88
  • [3] Polymer concrete-filled steel tubes under axial compression
    Oyawa, WO
    Sugiura, K
    Watanabe, E
    CONSTRUCTION AND BUILDING MATERIALS, 2001, 15 (04) : 187 - 197
  • [4] Behaviour of concrete-filled double-skin thin-walled corrugated steel tubes under axial compression
    Lu, Bo
    Fang, Yong
    Elchalakani, Mohamed
    Wang, Yuyin
    Yang, Hua
    THIN-WALLED STRUCTURES, 2024, 205
  • [5] Behaviour of concrete-filled steel tubes with concrete imperfection under axial tension
    Ye, Yong
    Li, Wei
    Liu, Xiao-Juan
    Guo, Zi-Xiong
    MAGAZINE OF CONCRETE RESEARCH, 2021, 73 (14) : 743 - 756
  • [6] Concrete-filled bimetallic tubes (CFBT) under axial compression: Analytical behaviour
    Ye, Yong
    Han, Lin-Hai
    Guo, Zi-Xiong
    THIN-WALLED STRUCTURES, 2017, 119 : 839 - 850
  • [7] Analytical Studies of Concrete-Filled Circular Steel Tubes under Axial Compression
    Choi, K. K.
    Xiao, Y.
    JOURNAL OF STRUCTURAL ENGINEERING, 2010, 136 (05) : 565 - 573
  • [8] Concrete-Filled Circular Steel Tubes with a Timber Infill under Axial Compression
    Ghazijahani, Tohid Ghanbari
    Jiao, Hui
    Holloway, Damien
    JOURNAL OF STRUCTURAL ENGINEERING, 2017, 143 (07)
  • [9] Behaviour of FRP-confined compound concrete-filled circular thin steel tubes under axial compression
    Zhao, Junliang
    Xu, Chenhao
    Sun, Linzhu
    Wu, Dongyan
    ADVANCES IN STRUCTURAL ENGINEERING, 2020, 23 (09) : 1772 - 1784
  • [10] Mechanical performances of stiffened and reinforced concrete-filled steel tubes under axial compression
    Hasan, Hussein Ghanim
    Ekmekyapar, Talha
    Shehab, Bashar A.
    MARINE STRUCTURES, 2019, 65 : 417 - 432