Pathways for practical high-energy long-cycling lithium metal batteries

被引:2340
|
作者
Liu, Jun [1 ]
Bao, Zhenan [2 ]
Cui, Yi [2 ]
Dufek, Eric J. [3 ]
Goodenough, John B. [4 ]
Khalifah, Peter [5 ]
Li, Qiuyan [1 ]
Liaw, Bor Yann [3 ]
Liu, Ping [6 ]
Manthiram, Arumugam [4 ]
Meng, Y. Shirley [6 ]
Subramanian, Venkat R. [1 ,7 ]
Toney, Michael F. [8 ]
Viswanathan, Vilayanur V. [1 ]
Whittingham, M. Stanley [9 ]
Xiao, Jie [1 ]
Xu, Wu [1 ]
Yang, Jihui [7 ]
Yang, Xiao-Qing [5 ]
Zhang, Ji-Guang [1 ]
机构
[1] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[3] Idaho Natl Lab, Clean Energy & Transportat Div, Idaho Falls, ID USA
[4] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
[5] Brookhaven Natl Lab, Div Chem, Upton, NY 11973 USA
[6] Univ Calif San Diego, Dept NanoEngn, San Diego, CA 92103 USA
[7] Univ Washington, Coll Engn, Seattle, WA 98195 USA
[8] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA USA
[9] SUNY Binghamton, Dept Mat Sci & Engn, Binghamton, NY USA
关键词
SOLID-ELECTROLYTE INTERPHASES; LI-ION; DEPOSITION; INTERFACES; EFFICIENCY; CONVERSION; CATHODES; ANODES; WATER;
D O I
10.1038/s41560-019-0338-x
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
State-of-the-art lithium (Li)-ion batteries are approaching their specific energy limits yet are challenged by the ever-increasing demand of today's energy storage and power applications, especially for electric vehicles. Li metal is considered an ultimate anode material for future high-energy rechargeable batteries when combined with existing or emerging high-capacity cathode materials. However, much current research focuses on the battery materials level, and there have been very few accounts of cell design principles. Here we discuss crucial conditions needed to achieve a specific energy higher than 350 Wh kg(-1), up to 500 Wh kg(-1), for rechargeable Li metal batteries using high-nickel-content lithium nickel manganese cobalt oxides as cathode materials. We also provide an analysis of key factors such as cathode loading, electrolyte amount and Li foil thickness that impact the cell-level cycle life. Furthermore, we identify several important strategies to reduce electrolyte-Li reaction, protect Li surfaces and stabilize anode architectures for long-cycling high-specific-energy cells.
引用
收藏
页码:180 / 186
页数:7
相关论文
共 50 条
  • [1] Pathways for practical high-energy long-cycling lithium metal batteries
    Jun Liu
    Zhenan Bao
    Yi Cui
    Eric J. Dufek
    John B. Goodenough
    Peter Khalifah
    Qiuyan Li
    Bor Yann Liaw
    Ping Liu
    Arumugam Manthiram
    Y. Shirley Meng
    Venkat R. Subramanian
    Michael F. Toney
    Vilayanur V. Viswanathan
    M. Stanley Whittingham
    Jie Xiao
    Wu Xu
    Jihui Yang
    Xiao-Qing Yang
    Ji-Guang Zhang
    Nature Energy, 2019, 4 : 180 - 186
  • [2] Molecular Design of Competitive Solvation Electrolytes for Practical High-Energy and Long-Cycling Lithium-Metal Batteries
    Zhang, Guangzhao
    Li, Jiawei
    Chi, Shang-Sen
    Wang, Jun
    Wang, Qingrong
    Ke, Ruohong
    Liu, Zhongbo
    Wang, Hui
    Wang, Chaoyang
    Chang, Jian
    Deng, Yonghong
    Lu, Jun
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (13)
  • [3] Mesoporous Silica Reinforced Hybrid Polymer Artificial Layer for High-Energy and Long-Cycling Lithium Metal Batteries
    Wu, Chen
    Guo, Feihu
    Zhuang, Lin
    Ai, Xinping
    Zhong, Faping
    Yang, Hanxi
    Qian, Jiangfeng
    ACS ENERGY LETTERS, 2020, 5 (05): : 1644 - 1652
  • [4] A High-Energy Long-Cycling Solid-State Lithium-Metal Battery Operating at High Temperatures
    Wang, Sheng
    Xu, Ke
    Song, Hucheng
    Zhu, Ting
    Yu, Zhiqian
    Song, Xiaopan
    Li, Dongke
    Yu, Linwei
    Xu, Jun
    Chen, Kunji
    ADVANCED ENERGY MATERIALS, 2022, 12 (38)
  • [5] Publisher Correction: High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes
    Yong-Gun Lee
    Satoshi Fujiki
    Changhoon Jung
    Naoki Suzuki
    Nobuyoshi Yashiro
    Ryo Omoda
    Dong-Su Ko
    Tomoyuki Shiratsuchi
    Toshinori Sugimoto
    Saebom Ryu
    Jun Hwan Ku
    Taku Watanabe
    Youngsin Park
    Yuichi Aihara
    Dongmin Im
    In Taek Han
    Nature Energy, 2020, 5 : 348 - 348
  • [6] Design of safe, long-cycling and high-energy lithium metal anodes in all working conditions: Progress, challenges and perspectives
    Wei, Chuanliang
    Zhang, Yuchan
    Tian, Yuan
    Tan, Liwen
    An, Yongling
    Qian, Yi
    Xi, Baojuan
    Xiong, Shenglin
    Feng, Jinkui
    Qian, Yitai
    ENERGY STORAGE MATERIALS, 2021, 38 : 157 - 189
  • [7] Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries
    Zhiao Yu
    Hansen Wang
    Xian Kong
    William Huang
    Yuchi Tsao
    David G. Mackanic
    Kecheng Wang
    Xinchang Wang
    Wenxiao Huang
    Snehashis Choudhury
    Yu Zheng
    Chibueze V. Amanchukwu
    Samantha T. Hung
    Yuting Ma
    Eder G. Lomeli
    Jian Qin
    Yi Cui
    Zhenan Bao
    Nature Energy, 2020, 5 : 526 - 533
  • [8] Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries
    Yu, Zhiao
    Wang, Hansen
    Kong, Xian
    Huang, William
    Tsao, Yuchi
    Mackanic, David G.
    Wang, Kecheng
    Wang, Xinchang
    Huang, Wenxiao
    Choudhury, Snehashis
    Zheng, Yu
    Amanchukwu, Chibueze, V
    Hung, Samantha T.
    Ma, Yuting
    Lomeli, Eder G.
    Qin, Jian
    Cui, Yi
    Bao, Zhenan
    NATURE ENERGY, 2020, 5 (07) : 526 - 533
  • [9] Interfacial Layers with Desolvation Function Induced Stable Deposition of Lithium Metal for Long-Cycling Lithium Metal Batteries
    Qu, Zongtao
    Chen, Kaixuan
    Wang, Wenkang
    Dai, Yao
    Lu, Xia
    Lyu, Shu-Shen
    NANO LETTERS, 2024, 24 (26) : 8055 - 8062
  • [10] Natural protein as novel additive of a commercial electrolyte for Long-Cycling lithium metal batteries
    Wang, Chenxu
    Fu, Xuewei
    Ying, Chunhua
    Liu, Jin
    Zhong, Wei-Hong
    Chemical Engineering Journal, 2022, 437