Classification of negative and positive18F-florbetapir brain PET studies in subjective cognitive decline patients using a convolutional neural network

被引:14
|
作者
de Vries, Bart Marius [1 ]
Golla, Sandeep S. V. [1 ]
Ebenau, Jarith [2 ]
Verfaillie, Sander C. J. [2 ]
Timmers, Tessa [2 ]
Heeman, Fiona [1 ]
Cysouw, Matthijs C. F. [1 ]
van Berckel, Bart N. M. [1 ,2 ]
van der Flier, Wiesje M. [2 ,3 ]
Yaqub, Maqsood [1 ]
Boellaard, Ronald [1 ]
机构
[1] Vrije Univ Amsterdam, Amsterdam UMC, Dept Radiol & Nucl Med, De Boelelaan 1117, NL-1081 HV Amsterdam, Netherlands
[2] Vrije Univ Amsterdam, Amsterdam UMC, Alzheimer Ctr & Dept Neurol, De Boelelaan 1117, Amsterdam, Netherlands
[3] Vrije Univ Amsterdam, Amsterdam UMC, Dept Epidemiol & Biostat, De Boelelaan 1117, NL-1081 HV Amsterdam, Netherlands
基金
加拿大健康研究院; 美国国家卫生研究院;
关键词
Convolution neural network; Artificial intelligence; Subjective cognitive decline; Classification; Amyloid; F-18-florbetapir; AMYLOID PLAQUES; FLORBETAPIR; BINDING; IMAGES;
D O I
10.1007/s00259-020-05006-3
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose Visual reading of(18)F-florbetapir positron emission tomography (PET) scans is used in the diagnostic process of patients with cognitive disorders for assessment of amyloid-ss (Ass) depositions. However, this can be time-consuming, and difficult in case of borderline amyloid pathology. Computer-aided pattern recognition can be helpful in this process but needs to be validated. The aim of this work was to develop, train, validate and test a convolutional neural network (CNN) for discriminating between Ass negative and positive(18)F-florbetapir PET scans in patients with subjective cognitive decline (SCD). Methods F-18-florbetapir PET images were acquired and visually assessed. The SCD cohort consisted of 133 patients from the SCIENCe cohort and 22 patients from the ADNI database. From the SCIENCe cohort, standardized uptake value ratio (SUVR) images were computed. From the ADNI database, SUVR images were extracted. 2D CNNs (axial, coronal and sagittal) were built to capture features of the scans. The SCIENCe scans were randomly divided into training and validation set (5-fold cross-validation), and the ADNI scans were used as test set. Performance was evaluated based on average accuracy, sensitivity and specificity from the cross-validation. Next, the best performing CNN was evaluated on the test set. Results The sagittal 2D-CNN classified the SCIENCe scans with the highest average accuracy of 99% +/- 2 (SD), sensitivity of 97% +/- 7 and specificity of 100%. The ADNI scans were classified with a 95% accuracy, 100% sensitivity and 92.3% specificity. Conclusion The 2D-CNN algorithm can classify Ass negative and positive(18)F-florbetapir PET scans with high performance in SCD patients.
引用
收藏
页码:721 / 728
页数:8
相关论文
共 49 条
  • [1] Classification of negative and positive 18F-florbetapir brain PET studies in subjective cognitive decline patients using a convolutional neural network
    Bart Marius de Vries
    Sandeep S. V. Golla
    Jarith Ebenau
    Sander C. J. Verfaillie
    Tessa Timmers
    Fiona Heeman
    Matthijs C. F. Cysouw
    Bart N. M. van Berckel
    Wiesje M. van der Flier
    Maqsood Yaqub
    Ronald Boellaard
    [J]. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48 : 721 - 728
  • [2] Classification of [18F]Florbetapir brain PET studies in cognitively normal subjects using a Convolutional Neural Network
    Boellaard, R.
    de Vries, B.
    Timmers, T.
    Ebenau, J.
    Verfaillie, S.
    Heeman, F.
    Cysouw, M.
    van der Flier, W.
    van Berckel, B.
    Yaqub, M.
    Golla, S.
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (SUPPL 1) : S28 - S29
  • [3] Impact of PET Brain Imaging Using F18-FDG and F18-FLORBETAPIR In Patients With Cognitive Impairment
    Gamez-Cenzano, C.
    Robles-Barba, J. J.
    Rodriguez-Bel, L.
    Gascon-Bayarri, J.
    Cortes-Romera, M.
    Sabate-Llobera, A.
    Gracia-Sanchez, L. M.
    Romero-Zayas, I.
    Roca-Engronyat, M.
    Vercher-Conejero, J. L.
    Majos-Torro, C.
    Soriano-Mas, C.
    Aguilera-Grijalvo, C.
    Rico-Pons, I.
    Rene-Ramirez, R.
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2015, 42 : S554 - S554
  • [4] Performance evaluation in [18F]Florbetaben brain PET images classification using 3D Convolutional Neural Network
    Lee, Seung-Yeon
    Kang, Hyeon
    Jeong, Jong-Hun
    Kang, Do-young
    [J]. PLOS ONE, 2021, 16 (10):
  • [5] Identifying Biomarkers of Subjective Cognitive Decline Using Graph Convolutional Neural Network for fMRI Analysis
    Zhang, Zhao
    Li, Guangfei
    Niu, Jiaxi
    Du, Sihui
    Gao, Tianxin
    Liu, Weifeng
    Jiang, Zhenqi
    Tang, Xiaoying
    Xu, Yong
    [J]. PROCEEDINGS OF 2022 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2022), 2022, : 1306 - 1311
  • [6] Evaluation of a Volumetric Map of Centiloids for Classifying Amyloid Positive and Negative Disease Using 18F Florbetapir PET
    Haas, Michael
    Balhorn, William
    Cole, Natalie
    Nelson, Aaron
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2023, 64
  • [7] Head-to-head comparison of relative cerebral blood flow derived from dynamic [18F]florbetapir and [18F]flortaucipir PET in subjects with subjective cognitive decline
    Tuncel, Hayel
    Visser, Denise
    Timmers, Tessa
    Wolters, Emma E.
    Ossenkoppele, Rik
    van der Flier, Wiesje M.
    van Berckel, Bart N. M.
    Boellaard, Ronald
    Golla, Sandeep S. V.
    [J]. EJNMMI RESEARCH, 2023, 13 (01)
  • [8] Head-to-head comparison of relative cerebral blood flow derived from dynamic [18F]florbetapir and [18F]flortaucipir PET in subjects with subjective cognitive decline
    Hayel Tuncel
    Denise Visser
    Tessa Timmers
    Emma E. Wolters
    Rik Ossenkoppele
    Wiesje M. van der Flier
    Bart N. M. van Berckel
    Ronald Boellaard
    Sandeep S. V. Golla
    [J]. EJNMMI Research, 13
  • [9] Influence of CT reconstruction parameters on 18F-FDG PET/CT Uptake Classification using a Deep Convolutional Neural Network
    Goddard, Amy
    Platsch, Guenther
    von Gall, Carl
    Sibille, Ludovic
    Spottiswoode, Bruce
    Shah, Vijay
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2020, 61
  • [10] Validation of reference regions for [18F]Flortaucipir and [18F]Florbetapir brain PET studies using non-invasive simplified metrics
    Golla, S. S. V.
    de Vries, B. M.
    Timmers, T.
    Wolters, E. E.
    Ossenkoppele, R.
    Verfaillie, S.
    Schuit, R. C.
    Scheltens, P.
    van der Flier, W. M.
    Windhorst, A. D.
    van Berckel, B. N.
    Boellaard, R.
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (SUPPL 1) : S786 - S787