On the Galois module structure of cyclic Kummer extensions

被引:0
|
作者
Miyata, Yoshimasa [1 ]
机构
[1] Shizuoka Univ, Fac Educ, Shizuoka 4228529, Japan
关键词
Local field; Free module; Isomorphism class; Stickelberger ideal;
D O I
10.1016/j.jalgebra.2008.06.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be an odd prime number. Let K/k be a cyclic totally ramified Kummer extension of degree p(n) with the Galois group G and assume K has a Kummer generator satisfying some conditions. Let D and a be the rings of integers in K and k, respectively. In case k is a p-adic number field, let D-1 be the ring of integers in the subextension of K/k of degree p(l) over k. We obtain conditions that all subrings D-1 of D = D-n (0 < 1 <= n) are free over associated orders U-1 of D-1, and we prove that U = U-n is stable under the action of automorphisms of G. In case k is an algebraic number field, for tamely ramified abelian extensions K/k, McCulloh gave the characterization of the set R(oG) of realizable Galois module classes cl(D) and proved that R(o vertical bar mu(E)vertical bar) contains Cl(o vertical bar mu(E)vertical bar)(Sc), where o vertical bar mu(E)vertical bar is a certain quotient ring of oG and Sc is the Stickelberger ideal. For cyclic wildly ramified Kummer extensions K/k, we obtain the relation between two sets R(o vertical bar mu(E)vertical bar) and Cl(o vertical bar mu(E)vertical bar)(Sc) which is the analogous result to his result. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3461 / 3480
页数:20
相关论文
共 50 条
  • [1] Galois module structure of non-Kummer extensions
    Shih-Ping Chan
    Archiv der Mathematik, 1998, 70 : 286 - 292
  • [2] Galois module structure of non-Kummer extensions
    Chan, SP
    ARCHIV DER MATHEMATIK, 1998, 70 (04) : 286 - 292
  • [3] Galois module structure of Galois cohomology for embeddable cyclic extensions of degree pn
    Lemire, N.
    Minac, J.
    Schultz, A.
    Swallow, J.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 81 : 525 - 543
  • [4] GALOIS MODULE STRUCTURE OF THE INTEGERS IN WILDLY RAMIFIED CYCLIC EXTENSIONS
    ELDER, GG
    MADAN, ML
    JOURNAL OF NUMBER THEORY, 1994, 47 (02) : 138 - 174
  • [5] On the Galois structure of the class group of certain Kummer extensions
    Lecouturier, Emmanuel
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 98 : 35 - 58
  • [6] GALOIS MODULE STRUCTURE FOR INTERMEDIATE EXTENSIONS
    ULLOM, SV
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1980, 22 (OCT): : 204 - 214
  • [7] GALOIS MODULE STRUCTURE OF FIELD EXTENSIONS
    Lundstrom, Patrik
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2007, 2 : 100 - 105
  • [8] GALOIS MODULE STRUCTURE OF KUMMER ORDERS AND ELLIPTIC UNITS
    BLEY, W
    MANUSCRIPTA MATHEMATICA, 1994, 82 (3-4) : 381 - 392
  • [9] GALOIS MODULE STRUCTURE OF ABELIAN EXTENSIONS
    MCCULLOH, LR
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1987, 375 : 259 - 306
  • [10] Galois module structure of the units modulo pm of cyclic extensions of degree pn
    Minac, Jan
    Schultz, Andrew
    Swallow, John
    MANUSCRIPTA MATHEMATICA, 2023, 171 (1-2) : 295 - 345