Prognostic value of a gene signature in clear cell renal cell carcinoma

被引:22
|
作者
Chen, Liang [1 ]
Luo, Yongwen [1 ]
Wang, Gang [2 ,3 ]
Qian, Kaiyu [2 ,3 ]
Qian, Guofeng [4 ]
Wu, Chin-Lee [5 ]
Dan, Han C. [6 ]
Wang, Xinghuan [1 ]
Xiao, Yu [1 ,2 ,3 ]
机构
[1] Wuhan Univ, Zhongnan Hosp, Dept Urol, Donghu Rd 169, Wuhan 430071, Hubei, Peoples R China
[2] Wuhan Univ, Zhongnan Hosp, Dept Biol Repositories, Wuhan, Hubei, Peoples R China
[3] Wuhan Univ, Zhongnan Hosp, Lab Precis Med, Wuhan, Hubei, Peoples R China
[4] Zhejiang Univ, Affiliated Hosp 1, Dept Endocrinol, Hangzhou, Zhejiang, Peoples R China
[5] Harvard Med Sch, Massachusetts Gen Hosp, Dept Urol, Boston, MA 02115 USA
[6] Univ Maryland, Sch Med, Greenebaum Canc Ctr, Baltimore, MD 21201 USA
关键词
clear cell renal cell carcinoma; mRNA signature; nomogram; overall survival; the Cancer Genome Atlas; COLON-CANCER; EXPRESSION; CLASSIFICATION; IDENTIFICATION; PROGRESSION; ONCOGENE; PATHWAYS; MODEL; STAGE;
D O I
10.1002/jcp.27700
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Renal cancer is acommon urogenital system malignance. Novel biomarkers could provide more and more critical information ontumor features and patients' prognosis. Here, we performed an integrated analysis on the discovery set and established a three-gene signature to predict the prognosis for clear cell renal cell carcinoma (ccRCC). By constructing a LASSO Cox regression model, a 3-messenger RNA (3-mRNA) signature was identified. Based on the 3-mRNA signature, we divided patients into high- and low-risk groups, and validated thisby using three other data sets. In the discovery set, this signature could successfully distinguish between the high- and low-risk patients (hazard ratio (HR), 2.152; 95% confidence interval (CI),1.509-3.069; p<0.0001). Analysis ofinternal and two external validation sets yielded consistent results (internal: HR, 2.824; 95% CI, 1.601-4.98; p<0.001; GSE29609: HR, 3.002; 95% CI, 1.113-8.094; p=0.031; E-MTAB-3267: HR, 2.357; 95% CI, 1.243-4.468; p=0.006). Time-dependent receiver operating characteristic (ROC) analysis indicated that the area under the ROC curve at 5 years was 0.66 both in the discovery and internal validation set, while the two external validation sets also suggested good performance of the 3-mRNA signature. Besides that, a nomogram was built and the calibration plots and decision curve analysis indicated the good performance and clinical utility of the nomogram. In conclusion, this 3-mRNA classifier proved to be a useful tool for prognostic evaluation and could facilitate personalized management of ccRCC patients.
引用
收藏
页码:10324 / 10335
页数:12
相关论文
共 50 条
  • [1] Development and Validation of a Prognostic Gene Signature in Clear Cell Renal Cell Carcinoma
    Zhan, Chuanchuan
    Wang, Zichu
    Xu, Chao
    Huang, Xiao
    Su, Junzhou
    Chen, Bisheng
    Wang, Mingshan
    Qi, Zhihong
    Bai, Peiming
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2021, 8
  • [2] PROGNOSTIC VALUE OF TISSUE BASED BIOMARKER SIGNATURE IN CLEAR CELL RENAL CELL CARCINOMA
    Haddad, Ahmed
    Luo, Jun-Hang
    Krabbe, Laura-Maria
    Darwish, Oussama
    Gayed, Bishoy
    Youssef, Ramy
    Kapur, Payal
    Rakheja, Dinesh
    Lotan, Yair
    Sagalowsky, Arthur
    Margulis, Vitaly
    JOURNAL OF UROLOGY, 2016, 195 (04): : E1033 - E1033
  • [3] Prognostic value of neutrophil extracellular trap signature in clear cell renal cell carcinoma
    Li, Rong
    Jiang, Xuewen
    Wang, Pin
    Liu, Xiaoyan
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [4] Molecular prognostic signature in clear cell renal carcinoma
    Brunelli, M.
    Gobbo, S.
    Segala, D.
    Ficarra, V.
    Novara, G.
    Martignoni, G.
    VIRCHOWS ARCHIV, 2011, 459 : S56 - S56
  • [5] Prognostic value of tissue-based biomarker signature in clear cell renal cell carcinoma
    Haddad, Ahmed Q.
    Luo, Jun-Hang
    Krabbe, Laura-Maria
    Darwish, Oussama
    Gayed, Bishoy
    Youssef, Ramy
    Kapur, Payal
    Rakheja, Dinesh
    Lotan, Yair
    Sagalowsky, Arthur
    Margulis, Vitaly
    BJU INTERNATIONAL, 2017, 119 (05) : 741 - 747
  • [6] Prognostic Gene Expression-Based Signature in Clear-Cell Renal Cell Carcinoma
    Roldan, Fiorella L.
    Izquierdo, Laura
    Ingelmo-Torres, Mercedes
    Lozano, Juan Jose
    Carrasco, Raquel
    Cunado, Alexandra
    Reig, Oscar
    Mengual, Lourdes
    Alcaraz, Antonio
    CANCERS, 2022, 14 (15)
  • [7] Discovery and Validation of a 15-Gene Prognostic Signature for Clear Cell Renal Cell Carcinoma
    Mehra, Rohit
    Nallandhighal, Srinivas
    Cotta, Brittney
    Knuth, Zayne
    Su, Fengyun
    Kasputis, Amy
    Zhang, Yuping
    Wang, Rui
    Cao, Xuhong
    Udager, Aaron M.
    Dhanasekaran, Saravana M.
    Cieslik, Marcin P.
    Morgan, Todd M.
    Salami, Simpa S.
    JCO PRECISION ONCOLOGY, 2024, 8
  • [8] An eleven metabolic gene signature-based prognostic model for clear cell renal cell carcinoma
    Wu, Yue
    Wei, Xian
    Feng, Huan
    Hu, Bintao
    Liu, Bo
    Luan, Yang
    Ruan, Yajun
    Liu, Xiaming
    Liu, Zhuo
    Wang, Shaogang
    Liu, Jihong
    Wang, Tao
    AGING-US, 2020, 12 (22): : 23165 - 23186
  • [9] Development and validation of a prognostic immune-associated gene signature in clear cell renal cell carcinoma
    Shen, Chengquan
    Liu, Jing
    Wang, Jirong
    Zhong, Xiulong
    Dong, Dahai
    Yang, Xiaokun
    Wang, Yonghua
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2020, 81
  • [10] Development of an Individualized Ubiquitin Prognostic Signature for Clear Cell Renal Cell Carcinoma
    Wu, Yue
    Zhang, Xi
    Wei, Xian
    Feng, Huan
    Hu, Bintao
    Deng, Zhiyao
    Liu, Bo
    Luan, Yang
    Ruan, Yajun
    Liu, Xiaming
    Liu, Zhuo
    Liu, Jihong
    Wang, Tao
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9