Deep Learning for Better Variant Calling for Cancer Diagnosis and Treatment

被引:0
|
作者
Ramachandran, Anand [1 ]
Li, Huiren [1 ]
Klee, Eric [2 ]
Lumetta, Steven S. [1 ]
Chen, Deming [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Mayo Clin, Biomed Informat, Rochester, MN USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
High-throughput techniques have revolutionized the study of genomics and molecular biology in recent years. These methods provide a large quantity of sequence data, and have applications in different areas of bioinformatics. One can sequence parts or whole of an organism's DNA to determine genetic information about an individual or a population, measure expression levels of different genes under different conditions, and determine binding affinity of proteins to DNA segments revealing details regarding gene regulation, at a higher resolution than before. However, different high-throughput methods that target even a single application have different underlying error models. Robust analytic pipelines are necessary to extract necessary information from the raw data. In this paper, we discuss future research directions for developing such analytics using techniques from Machine Learning and Deep Neural Networks. We focus on two applications that will affect the diagnosis and treatment of cancer.
引用
收藏
页码:16 / 21
页数:6
相关论文
共 50 条
  • [1] Improving variant calling using population data and deep learning
    Chen, Nae-Chyun
    Kolesnikov, Alexey
    Goel, Sidharth
    Yun, Taedong
    Chang, Pi-Chuan
    Carroll, Andrew
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [2] Improving variant calling using population data and deep learning
    Nae-Chyun Chen
    Alexey Kolesnikov
    Sidharth Goel
    Taedong Yun
    Pi-Chuan Chang
    Andrew Carroll
    BMC Bioinformatics, 24
  • [3] A deep learning approach to automate refinement of somatic variant calling from cancer sequencing data
    Ainscough, Benjamin J.
    Barnell, Erica K.
    Ronning, Peter
    Campbell, Katie M.
    Wagner, Alex H.
    Fehniger, Todd A.
    Dunn, Gavin P.
    Uppaluri, Ravindra
    Govindan, Ramaswamy
    Rohan, Thomas E.
    Griffith, Malachi
    Mardis, Elaine R.
    Swamidass, S. Joshua
    Griffith, Obi L.
    NATURE GENETICS, 2018, 50 (12) : 1735 - +
  • [4] A deep learning approach to automate refinement of somatic variant calling from cancer sequencing data
    Benjamin J. Ainscough
    Erica K. Barnell
    Peter Ronning
    Katie M. Campbell
    Alex H. Wagner
    Todd A. Fehniger
    Gavin P. Dunn
    Ravindra Uppaluri
    Ramaswamy Govindan
    Thomas E. Rohan
    Malachi Griffith
    Elaine R. Mardis
    S. Joshua Swamidass
    Obi L. Griffith
    Nature Genetics, 2018, 50 : 1735 - 1743
  • [5] A comprehensive review of deep learning-based variant calling methods
    Ren, Junjun
    Zhang, Zhengqian
    Wu, Ying
    Wang, Jialiang
    Liu, Yongzhuang
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2024, 23 (04) : 303 - 313
  • [6] Deep learning in cancer diagnosis, prognosis and treatment selection
    Khoa A. Tran
    Olga Kondrashova
    Andrew Bradley
    Elizabeth D. Williams
    John V. Pearson
    Nicola Waddell
    Genome Medicine, 13
  • [7] Deep learning in cancer diagnosis, prognosis and treatment selection
    Tran, Khoa A.
    Kondrashova, Olga
    Bradley, Andrew
    Williams, Elizabeth D.
    Pearson, John, V
    Waddell, Nicola
    GENOME MEDICINE, 2021, 13 (01)
  • [8] An Efficient Prostate MRI Segmentation using Deep Learning for better Cancer Diagnosis
    Ali, Syed Saad Azhar
    2024 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CCECE 2024, 2024, : 324 - 329
  • [9] Deep learning based radiomics for gastrointestinal cancer diagnosis and treatment: A minireview
    Wong, Pak Kin
    Chan, In Neng
    Yan, Hao-Ming
    Gao, Shan
    Wong, Chi Hong
    Yan, Tao
    Yao, Liang
    Hu, Ying
    Wang, Zhong-Ren
    Yu, Hon Ho
    WORLD JOURNAL OF GASTROENTEROLOGY, 2022, 28 (45) : 6363 - 6379
  • [10] Deep learning based radiomics for gastrointestinal cancer diagnosis and treatment: A minireview
    Pak Kin Wong
    In Neng Chan
    Hao-Ming Yan
    Shan Gao
    Chi Hong Wong
    Tao Yan
    Liang Yao
    Ying Hu
    Zhong-Ren Wang
    Hon Ho Yu
    World Journal of Gastroenterology, 2022, 28 (45) : 6363 - 6379