The obstacle problem for nonlinear noncoercive elliptic equations with <mml:msup>L1</mml:msup>-data

被引:0
|
作者
Zheng, Jun [1 ]
Tavares, Leandro S. [2 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu, Sichuan, Peoples R China
[2] Univ Fed Cariri, Ctr Ciencias & Tecnol, Juazeiro Do Norte, Brazil
来源
关键词
Obstacle problem; Noncoercive elliptic equation; L-1-data; Entropy solution; UNILATERAL PROBLEMS; EXISTENCE;
D O I
10.1186/s13661-019-1168-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the obstacle problem governed by nonlinear noncoercive elliptic equations with L1-data. We prove the existence of an entropy solution and show its continuous dependence on the L1-data in W1,q() with q>1.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A theoretical analysis of the semileptonic decays <mml:msup>η(′)</mml:msup>→<mml:msup>π0</mml:msup><mml:msup>l+</mml:msup><mml:msup>l-</mml:msup> and <mml:msup>η′</mml:msup>→η<mml:msup>l+</mml:msup><mml:msup>l-</mml:msup>
    Escribano, Rafel
    Royo, Emilio
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (12):
  • [2] Nonlinear Elliptic Equations Without Sign Condition and <mml:msup>L1</mml:msup>-Data in Musielak-Orlicz-Sobolev Spaces
    El Moumni, Mostafa
    ACTA APPLICANDAE MATHEMATICAE, 2019, 159 (01) : 95 - 117
  • [3] Measurement of exclusive <mml:msup>π+</mml:msup><mml:msup>π-</mml:msup> and <mml:msup>ρ0</mml:msup> meson photoproduction at HERA: H1 Collaboration
    Andreev, V.
    Baty, A.
    Baghdasaryan, A.
    Begzsuren, K.
    Belousov, A.
    Bolz, A.
    Boudry, V
    Brandt, G.
    Britzger, D.
    Buniatyan, A.
    Bystritskaya, L.
    Campbell, A. J.
    Avila, K. B. Cantun
    Cerny, K.
    Chekelian, V
    Chen, Z.
    Contreras, J. G.
    Cvach, J.
    Dainton, J. B.
    Daum, K.
    Deshpande, A.
    Diaconu, C.
    Eckerlin, G.
    Egli, S.
    Elsen, E.
    Favart, L.
    Fedotov, A.
    Feltesse, J.
    Fleischer, M.
    Fomenko, A.
    Gal, C.
    Gayler, J.
    Goerlich, L.
    Gogitidze, N.
    Gouzevitch, M.
    Grab, C.
    Grebenyuk, A.
    Greenshaw, T.
    Grindhammer, G.
    Haidt, D.
    Henderson, R. C. W.
    Hladky, J.
    Hoffmann, D.
    Horisberger, R.
    Hreus, T.
    Huber, F.
    Jacquet, M.
    Janssen, X.
    Jung, A. W.
    Jung, H.
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (12):
  • [4] Dissipative 2D MHD equations with <mml:msup>L1</mml:msup> vorticity and magnetic current
    Sammartino, M.
    Schonbek, M. E.
    Sciacca, V.
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2024, 21 (03) : 791 - 810
  • [5] Triangle singularity as the origin of X0(2900) and X1(2900) observed in <mml:msup>B+</mml:msup>→<mml:msup>D+</mml:msup><mml:msup>D-</mml:msup><mml:msup>K+</mml:msup>
    Liu, Xiao-Hai
    Yan, Mao-Jun
    Ke, Hong-Wei
    Li, Gang
    Xie, Ju-Jun
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (12):
  • [6] Coupled channel analysis of p<overbar></mml:mover>p<mml:mspace width="0.166667em"></mml:mspace>→<mml:mspace width="0.166667em"></mml:mspace><mml:msup>π0</mml:msup><mml:msup>π0</mml:msup>η, <mml:msup>π0</mml:msup>ηη and <mml:msup>K+</mml:msup><mml:msup>K<mml:mo>-</mml:msup><mml:msup>π0</mml:msup> at 900 MeV/c and of ππ-scattering data: The Crystal Barrel Collaboration
    Albrecht, M.
    Amsler, C.
    Duennweber, W.
    Faessler, M. A.
    Heinsius, F. H.
    Koch, H.
    Kopf, B.
    Kurilla, U.
    Meyer, C. A.
    Peters, K.
    Pychy, J.
    Qin, X.
    Steinke, M.
    Wiedner, U.
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (05):
  • [7] <mml:msup>L∞</mml:msup> Instability of Prandtl Layers
    Grenier, Emmanuel
    Nguyen, Toan T.
    ANNALS OF PDE, 2019, 5 (02)
  • [9] QED corrections in B<overbar></mml:mover>→K<overbar></mml:mover><mml:msup>l<mml:mo>+</mml:msup><mml:msup>l<mml:mo>-</mml:msup> at the double-differential level
    Isidori, Gino
    Nabeebaccus, Saad
    Zwicky, Roman
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, (12):
  • [10] Liouville theorems for Kirchhoff equations in <mml:msup>RN</mml:msup>
    Nhat Vy Huynh
    Phuong Le
    Dinh Phu Nguyen
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (06)