Bayesian adaptive group lasso with semiparametric hidden Markov models

被引:10
|
作者
Kang, Kai [1 ]
Song, Xinyuan [1 ,2 ]
Hu, X. Joan [3 ]
Zhu, Hongtu [4 ,5 ]
机构
[1] Chinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, Shenzhen Res Inst, Shatin, Hong Kong, Peoples R China
[3] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
[4] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27515 USA
[5] Univ N Carolina, Biomed Res Imaging Ctr, Chapel Hill, NC 27515 USA
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院; 中国国家自然科学基金;
关键词
linear basis expansion; Markov chain Monte Carlo; simultaneous model selection and estimation; LATENT VARIABLE MODELS; ALZHEIMERS-DISEASE; REGRESSION; SELECTION; HIPPOCAMPAL; COEFFICIENT; SHRINKAGE; EDUCATION; DECLINE; TIME;
D O I
10.1002/sim.8051
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents a Bayesian adaptive group least absolute shrinkage and selection operator method to conduct simultaneous model selection and estimation under semiparametric hidden Markov models. We specify the conditional regression model and the transition probability model in the hidden Markov model into additive nonparametric functions of covariates. A basis expansion is adopted to approximate the nonparametric functions. We introduce multivariate conditional Laplace priors to impose adaptive penalties on regression coefficients and different groups of basis expansions under the Bayesian framework. An efficient Markov chain Monte Carlo algorithm is then proposed to identify the nonexistent, constant, linear, and nonlinear forms of covariate effects in both conditional and transition models. The empirical performance of the proposed methodology is evaluated via simulation studies. We apply the proposed model to analyze a real data set that was collected from the Alzheimer's Disease Neuroimaging Initiative study. The analysis identifies important risk factors on cognitive decline and the transition from cognitive normal to Alzheimer's disease.
引用
收藏
页码:1634 / 1650
页数:17
相关论文
共 50 条
  • [1] Structure detection of semiparametric structural equation models with Bayesian adaptive group lasso
    Feng, Xiang-Nan
    Wang, Guo-Chang
    Wang, Yi-Fan
    Song, Xin-Yuan
    [J]. STATISTICS IN MEDICINE, 2015, 34 (09) : 1527 - 1547
  • [2] Bayesian Analysis of Semiparametric Hidden Markov Models With Latent Variables
    Song, Xinyuan
    Kang, Kai
    Ouyang, Ming
    Jiang, Xuejun
    Cai, Jingheng
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2018, 25 (01) : 1 - 20
  • [3] Semiparametric Hidden Markov Models
    Dannemann, Joern
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2012, 21 (03) : 677 - 692
  • [4] Bayesian Lasso for Semiparametric Structural Equation Models
    Guo, Ruixin
    Zhu, Hongtu
    Chow, Sy-Miin
    Ibrahim, Joseph G.
    [J]. BIOMETRICS, 2012, 68 (02) : 567 - 577
  • [5] Efficient Bayesian estimation and use of cut posterior in semiparametric hidden Markov models
    Moss, Daniel
    Rousseau, Judith
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (01): : 1815 - 1886
  • [6] Semiparametric hidden Markov models: identifiability and estimation
    Dannemann, Joern
    Holzmann, Hajo
    Leister, Anna
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2014, 6 (06): : 418 - 425
  • [7] Bayesian classification of Hidden Markov Models
    Kehagias, A
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 1996, 23 (05) : 25 - 43
  • [8] Bayesian Sensing Hidden Markov Models
    Saon, George
    Chien, Jen-Tzung
    [J]. IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2012, 20 (01): : 43 - 54
  • [9] Order selection for heterogeneous semiparametric hidden Markov models
    Zou, Yudan
    Song, Xinyuan
    Zhao, Qian
    [J]. STATISTICS IN MEDICINE, 2024, 43 (13) : 2501 - 2526
  • [10] Adaptively weighted group Lasso for semiparametric quantile regression models
    Honda, Toshio
    Ing, Ching-Kang
    Wu, Wei-Ying
    [J]. BERNOULLI, 2019, 25 (4B) : 3311 - 3338