Multiscale electrochemistry modeling of solid oxide fuel cells

被引:11
|
作者
Khaleel, MA [1 ]
Rector, DR [1 ]
Lin, Z [1 ]
Johnson, K [1 ]
Recknagle, K [1 ]
机构
[1] Pacific NW Natl Lab, Comp Sci & Math Div, Richland, WA 99352 USA
关键词
D O I
10.1615/IntJMultCompEng.v3.i1.30
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we present two levels of electrochemical modeling for solid oxide fuel cells: cell continuum and microscale electrochemistry. The microscale electrochemistry model simulates the performance of porous electrode materials based on the microstructure of the material, the distribution of reaction surfaces, and the transport of oxygen ions through the material. The overall fuel cell current-voltage relations are obtained using the microscale electrochemistry modeling and form the basic input to the continuum level electrochemistry model. The continuum electrochemistry model calculates the current electrical density, cell voltage, and heat production in fuel cell stacks with H-2 or other fuels, taking into account as inputs local values of the gas partial pressures and temperatures. This approach is based on a parameterized current-voltage (I-V) relation and includes the heat generation from both joule heating and chemical reactions. It also accounts for species production and destruction via mass balance. The continuum electrochemistry model is then coupled with a flow-thermal-mechanical simulation framework for fuel cell stack design and optimizing operating conditions.
引用
收藏
页码:33 / 47
页数:15
相关论文
共 50 条
  • [1] Modeling elementary heterogeneous chemistry and electrochemistry in solid-oxide fuel cells
    Zhu, HY
    Kee, RJ
    Janardhanan, VM
    Deutschmann, O
    Goodwin, DG
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (12) : A2427 - A2440
  • [2] Multiscale Modeling of Solid Oxide Fuel Cell Systems
    Zakrzewska, Barbara
    Pianko-Oprych, Paulina
    Jaworski, Zdzislaw
    [J]. CHEMIE INGENIEUR TECHNIK, 2014, 86 (07) : 1029 - 1043
  • [3] Modeling of solid oxide fuel cells
    Meng Ni
    [J]. Science Bulletin, 2016, 61 (17) : 1311 - 1312
  • [4] Modeling of solid oxide fuel cells
    Ni, Meng
    [J]. SCIENCE BULLETIN, 2016, 61 (17) : 1311 - 1312
  • [5] MODELING OF HEAT/MASS TRANSPORT AND ELECTROCHEMISTRY OF A SOLID OXIDE FUEL CELL
    Ji, Yan
    Chung, J. N.
    Yuan, Kun
    [J]. ADVANCES IN SOLID OXIDE FUEL CELLS II, 2007, 27 (04): : 419 - 433
  • [6] Telescopic projective Adams multiscale modeling of electrochemical reactions in tubular solid oxide fuel cells
    Yang, Chen
    He, Hangxing
    Zhou, Nana
    Peng, Wei
    Yang, Ke
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2016, 93 : 331 - 342
  • [7] Numerical modeling of solid oxide fuel cells
    Ho, Thinh X.
    Kosinski, Pawel
    Hoffmann, Alex C.
    Vik, Arild
    [J]. CHEMICAL ENGINEERING SCIENCE, 2008, 63 (21) : 5356 - 5365
  • [8] Tridimensional modeling of solid oxide fuel cells
    Andrade, Samuel Tadeu de Paula
    Bortolus, Marcos Vinicius
    Brant, Marcia Caldeira
    Domingues, Rosana Zacarias
    Matencio, Tulio
    [J]. MATERIA-RIO DE JANEIRO, 2008, 13 (03): : 462 - 479
  • [9] Modeling of solid-oxide fuel cells
    Janardhanan, Vinod M.
    Deutschmann, Olaf
    [J]. ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2007, 221 (04): : 443 - 478
  • [10] A two-dimensional modeling of solid oxide fuel cell button cells with detailed electrochemistry mechanism
    Li, Jingde
    Bai, Zhengyu
    Croiset, Eric
    [J]. JOURNAL OF POWER SOURCES, 2016, 333 : 164 - 172