Neumann boundary-value problems for a time-fractional diffusion-wave equation in a half-plane

被引:6
|
作者
Povstenko, Yuriy [1 ]
机构
[1] Jan Dlugosz Univ Czestochowa, Inst Math & Comp Sci, PL-42200 Czestochowa, Poland
关键词
Non-Fickean diffusion; Fractional calculus; Mittag-Leffler functions; Integral transforms; HEAT-CONDUCTION; RANDOM-WALK; RELAXATION;
D O I
10.1016/j.camwa.2012.02.064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The time-fractional diffusion-wave equation with the Caputo derivative of the order 0 < alpha < 2 is considered in a half-plane. Two types of Neumann boundary condition are examined: the mathematical condition with the prescribed boundary value of the normal derivative and the physical one with the prescribed boundary value of the matter flux. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3183 / 3192
页数:10
相关论文
共 50 条