Spectral estimation optical coherence tomography for axial super-resolution

被引:33
|
作者
Liu, Xinyu [1 ]
Chen, Si [1 ]
Cui, Dongyao [1 ]
Yu, Xiaojun [1 ]
Liu, Linbo [1 ,2 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 639798, Singapore
来源
OPTICS EXPRESS | 2015年 / 23卷 / 20期
基金
英国医学研究理事会; 新加坡国家研究基金会;
关键词
IN-VIVO; RESOLUTION; BIOPSY;
D O I
10.1364/OE.23.026521
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The depth reflectivity profile of Fourier domain optical coherence tomography (FD-OCT) is estimated from the inverse Fourier transform of the spectral interference signals (interferograms). As a result, the axial resolution is fundamentally limited by the coherence length of the light source. We demonstrate that using the autoregressive spectral estimation technique instead of the inverse Fourier transform, to analyze the spectral interferograms can improve the axial resolution. We name this method spectral estimation OCT (SE-OCT). SE-OCT breaks the coherence length limitation and improves the axial resolution by a factor of up to 4.7 compared with FD-OCT. Furthermore, SE-OCT provides complete sidelobe suppression in the depth point-spread function, further improving the image quality. We demonstrate that these technical advances enables clear identification of corneal endothelium anatomical details ex vivo that cannot be identified using the corresponding FD-OCT. Given that SE-OCT can be implemented in the FD-OCT devices without any hardware changes, the new capabilities provided by SE-OCT are likely to offer immediate improvements to the diagnosis and management of diseases based on OCT imaging. (C)2015 Optical Society of America
引用
收藏
页码:26521 / 26532
页数:12
相关论文
共 50 条
  • [1] Spectral estimation optical coherence tomography for axial super-resolution (Conference Presentation)
    Liu, Xinyu
    Yu, Xiaojun
    Wang, Nanshuo
    Bo, En
    Luo, Yuemei
    Chen, Si
    Cui, Dongyao
    Liu, Linbo
    OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICINE XX, 2016, 9697
  • [2] Fast and accurate spectral-estimation axial super-resolution optical coherence tomography
    de Wit, Jos
    Angelopoulos, Kostas
    Kalkman, Jeroen
    Glentis, George-Othon
    OPTICS EXPRESS, 2021, 29 (24) : 39946 - 39966
  • [3] Super-Resolution in Optical Coherence Tomography
    Wang, Qifan
    Zheng, Rencheng
    Achim, Alin
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 850 - 853
  • [4] Axial super-resolution for optical coherence tomography with the iterative adaptive approach
    de Wit, Jos
    Angelopoulos, Kostas
    Kalkman, Jeroen
    Glentis, George-Othon
    OPTICAL COHERENCE IMAGING TECHNIQUES AND IMAGING IN SCATTERING MEDIA IV, 2021, 11924
  • [5] Axial Super-Resolution Study for Optical Coherence Tomography Images Via Deep Learning
    Yuan, Zhuoqun
    Yang, Di
    Pan, Hongming
    Liang, Yanmei
    IEEE ACCESS, 2020, 8 (204941-204950) : 204941 - 204950
  • [6] Axial super-resolution optical coherence tomography via complex-valued network
    Wang, Lingyun
    Chen, Si
    Liu, Linbo
    Yin, Xue
    Shi, Guohua
    Mo, Jianhua
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (23):
  • [7] Super-resolution Optical Coherence Tomography for Biomedical Applications
    John, Pauline
    Zam, Azhar
    OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICINE XXVIII, 2024, 12830
  • [8] Super-resolution Limit for Raman Spectroscopy and Optical Coherence Tomography
    Uprety, Nabin
    Dhakal, Ashim
    2018 IEEE SENSORS, 2018, : 1404 - 1407
  • [9] Enhancement of optical coherence tomography axial resolution by spectral shaping
    Sun, S
    Guo, JH
    Gao, JS
    Xue, P
    CHINESE PHYSICS LETTERS, 2002, 19 (10) : 1456 - 1458
  • [10] A Dual-Branch Multidomain Feature Fusion Network for Axial Super-Resolution in Optical Coherence Tomography
    Xu, Quanqing
    He, Xiang
    Xu, Muhao
    Hu, Kaixuan
    Song, Weiye
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 461 - 465