ROBOTIC AUTONOMY IN SPACE: VISION-BASED CONTROL OF ROBOTIC CAPTURE OPERATION

被引:0
|
作者
Larouche, Benoit [1 ]
Zhu, Z. H. [1 ]
机构
[1] York Univ, Dept Earth & Space Sci & Engn, Toronto, ON M3J IP3, Canada
来源
SPACE FOR OUR FUTURE | 2013年 / 146卷
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
On-orbit servicing (OOS) consisting of assembly, repair, and maintenance tasks of spacecraft using satellite robot manipulators is an emerging technology and promises to be a key element in the future of space exploration as missions are becoming more complex and expensive. The OOS usually employs a robotic manipulator mounted onto a satellite to capture, service, and refuel other orbiting satellites. One of the critical phases of OOS is the capture of the object satellite, where the chase satellite's robotic manipulator approaches the free-floating object satellite to capture it. If not properly controlled, the object satellite and the robot may be pushed away from each other or the end-effector/object may be damaged by the contact force. The key examination point of this paper is the vision based guidance and control of the robotic manipulator. The system employs pure photogrammetry as guidance and performs the capture of a non-cooperative target. In order to improve, both in terms of time and strains, the capture operation, several strategies are examined and implemented including, dynamic digital damping, visual compensation, and weighted capture criteria. Kalman filter is used in the vision system in order to capture a target in motion. The first step is the approach which aligns the gripper in the most likely orientation to result in a successful capture. The second is the capture which involves bringing the gripper within range and determining whether or not the target is within its grasp. The final stage is bringing the target to a relative halt with minimal force and disturbances to the target. Once captured, a hybrid speed-force controller is developed to limit the amount of force applied to the grasping bar of the target while propagating the speed and direction of the target in order to smoothly bring the target to a halt. Testing results have demonstrate the proposed control system is effective and robustness.
引用
收藏
页码:275 / 282
页数:8
相关论文
共 50 条
  • [1] Vision-based Cartesian space motion control for flexible robotic manipulators
    Department of Mechanical Systems Engineering, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima, Japan
    Int. J. Model. Ident. Control, 2008, 4 (406-414): : 406 - 414
  • [2] Vision-based Motion Control for Robotic Systems
    Oda, Naoki
    Ito, Masabide
    Shibata, Masaaki
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2009, 4 (02) : 176 - 183
  • [3] Vision-based robotic grasping with constraints for robotic demanufacturing
    Shoaib, Mohammad Mahin
    Thant, Maung
    Zhou, ChuangChuang
    Peeters, Jef
    Kellens, Karel
    2024 ELECTRONICS GOES GREEN 2024+, EGG 2024, 2024,
  • [4] Vision-based control of robotic manipulator for citrus harvesting
    Mehta, S. S.
    Burks, T. F.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2014, 102 : 146 - 158
  • [5] Intelligent Lighting Control for Vision-Based Robotic Manipulation
    Chen, S. Y.
    Zhang, Jianwei
    Zhang, Houxiang
    Kwok, N. M.
    Li, Y. F.
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2012, 59 (08) : 3254 - 3263
  • [6] Vision-Based Adaptive Impedance Control for Robotic Polishing
    Zhou, Yang
    Li, Xiang
    Yue, Linzhu
    Gui, Linhai
    Sun, Guangli
    Jiang, Xin
    Liu, Yun-Hui
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 4560 - 4564
  • [7] Vision-based stratified robotic manipulation
    Wei, YJ
    Skaar, SB
    Goodwine, B
    2002 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-3, PROCEEDINGS, 2002, : 1638 - 1644
  • [8] A Vision-Based Robotic Follower Vehicle
    Giesbrecht, Jared L.
    Goi, Hien K.
    Barfoot, Timothy D.
    Francis, Bruce A.
    UNMANNED SYSTEMS TECHNOLOGY XI, 2009, 7332
  • [9] Vision-based robotic convoy driving
    Schneiderman, H
    Nashman, R
    Wavering, A
    Lumia, R
    MACHINE VISION AND APPLICATIONS, 1995, 8 (06) : 359 - 364
  • [10] Vision-Based Position/Impedance Control for Robotic Assembly Task
    Lei, Yanpu
    Xu, Jinyu
    Zhou, Wei
    Sun, Weigao
    Wu, Yue
    Luo, Jiawei
    Zhang, Hai-Tao
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 4620 - 4625