Front bifurcation in a tristable reaction-diffusion system under periodic forcing

被引:9
|
作者
Zemskov, EP [1 ]
机构
[1] Otto von Guericke Univ, Inst Theoret Phys, D-39106 Magdeburg, Germany
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 03期
关键词
D O I
10.1103/PhysRevE.69.036208
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A piecewise linear tristable reaction-diffusion equation under external forcing of periodic type is considered. A special feature of the forcing is that the force moves together with the traveling wave. Front velocity equations are obtained analytically using matching procedures for the front solutions. It is noted that there is a restriction in building of null-cline. For each choice of outer branches of null-cline the middle interfacial zone should not exceed some critical value. When this zone is larger the front does not exist. It is found that in the presence of forcing there exists a set of front solutions with different phases (matching point coordinates). The periodic forcing produces a change in the velocity-versus-phase diagram. For a specific choice of wave number, there is a bubble formation which corresponds to additional solutions when the velocity bifurcates to form three fronts.
引用
收藏
页码:036208 / 1
页数:8
相关论文
共 50 条
  • [1] Front propagation under periodic forcing in reaction-diffusion systems
    Zemskov, EP
    Kassner, K
    Müller, SC
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2003, 34 (03): : 285 - 292
  • [2] Front propagation under periodic forcing in reaction-diffusion systems
    E. P. Zemskov
    K. Kassner
    S. C. Müller
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 2003, 34 : 285 - 292
  • [3] A reaction-diffusion system with periodic front dynamics
    Medvedev, GS
    Kaper, TJ
    Kopell, N
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (05) : 1601 - 1638
  • [4] FRONT INTERACTION AND NONHOMOGENEOUS EQUILIBRIA FOR TRISTABLE REACTION-DIFFUSION EQUATIONS
    RUBINSTEIN, J
    STERNBERG, P
    KELLER, JB
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1993, 53 (06) : 1669 - 1685
  • [5] BIFURCATION AND STABILITY OF PERIODIC TRAVELING WAVES FOR A REACTION-DIFFUSION SYSTEM
    BARROW, DL
    BATES, PW
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1983, 50 (02) : 218 - 233
  • [6] Stability analysis of fronts in a tristable reaction-diffusion system
    E. P. Zemskov
    K. Kassner
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 2004, 42 : 423 - 429
  • [7] Stability analysis of fronts in a tristable reaction-diffusion system
    Zemskov, EP
    Kassner, K
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2004, 42 (03): : 423 - 429
  • [8] Control of spiral turbulence by periodic forcing in a reaction-diffusion system with gradients
    Wu, Yabi
    Qiao, Chun
    Qi Ouyang
    Wang, HongLi
    [J]. PHYSICAL REVIEW E, 2008, 77 (03):
  • [9] STABILITY AND BIFURCATION OF A REACTION-DIFFUSION SYSTEM
    HARITI, A
    CHERRUAULT, Y
    [J]. INTERNATIONAL JOURNAL OF BIO-MEDICAL COMPUTING, 1991, 29 (02): : 77 - 94
  • [10] Global Bifurcation for a Reaction-Diffusion System with Inclusions
    Eisner, Jan
    Kucera, Milan
    Vaeth, Martin
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2009, 28 (04): : 373 - 409