Solitary wave solutions of the fourth order Boussinesq equation through the exp(-Φ(η))-expansion method

被引:23
|
作者
Akbar, M. Ali [1 ]
Ali, Norhashidah Hj Mohd [2 ]
机构
[1] Rajshahi Univ, Dept Appl Math, Rajshahi 6205, Bangladesh
[2] Univ Sains Malaysia, Sch Math Sci, George Town, Malaysia
来源
SPRINGERPLUS | 2014年 / 3卷
关键词
exp(-Phi(eta))-expansion method; Fourth order Boussinesq equation; Solitary wave solutions; Soliton; Traveling wave solutions; (G'/G)-EXPANSION METHOD; EXPANSION METHOD;
D O I
10.1186/2193-1801-3-344
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The exp(-Phi(eta))-expansion method is an ascending method for obtaining exact and solitary wave solutions for nonlinear evolution equations. In this article, we implement the exp(-Phi(eta))-expansion method to build solitary wave solutions to the fourth order Boussinesq equation. The procedure is simple, direct and useful with the help of computer algebra. By using this method, we obtain solitary wave solutions in terms of the hyperbolic functions, the trigonometric functions and elementary functions. The results show that the exp(-Phi(eta))-expansion method is straightforward and effective mathematical tool for the treatment of nonlinear evolution equations in mathematical physics and engineering.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [1] Stability analysis of solitary wave solutions for the fourth-order nonlinear Boussinesq water wave equation
    Helal, M. A.
    Seadawy, A. R.
    Zekry, M. H.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 : 1094 - 1103
  • [2] Stability analysis of solitary wave solutions for the fourth-order nonlinear Boussinesq water wave equation
    Helal, M.A.
    Seadawy, A.R.
    Zekry, M.H.
    [J]. Applied Mathematics and Computation, 2014, 232 : 1094 - 1103
  • [3] Investigation of Solitary wave solutions for Vakhnenko-Parkes equation via exp-function and Exp(-φ(ξ))-expansion method
    Roshid, Harun-Or
    Kabir, Md Rashed
    Bhowmik, Rajandra Chadra
    Datta, Bimal Kumar
    [J]. SPRINGERPLUS, 2014, 3
  • [4] Solitary wave solutions of coupled boussinesq equation
    Abazari, Reza
    Jamshidzadeh, Shabnam
    Biswas, Anjan
    [J]. COMPLEXITY, 2016, 21 (S2) : 151 - 155
  • [5] Solitary and periodic wave solutions of the generalized fourth-order Boussinesq equation via He's variational methods
    Wang, Kang-Jia
    Wang, Guo-Dong
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (07) : 5617 - 5625
  • [6] Analytical analysis of the fourth-order Boussinesq equation by traveling wave solutions
    Haider, Jamil Abbas
    Muhammad, Noor
    Nadeem, Sohail
    Asghar, Saleem
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (17):
  • [7] Travelling wave solutions of the Rosenau equation using exp(±φ(ξ))-expansion method
    Lin, Fubiao
    Yang, Yang
    Yang, Xinxia
    Zhang, Qianhong
    [J]. PHYSICA SCRIPTA, 2024, 99 (03)
  • [8] Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized Boussinesq water wave equation
    Tian, Shou-Fu
    [J]. APPLIED MATHEMATICS LETTERS, 2020, 100
  • [9] New Solitary Wave Solution for the Boussinesq Wave Equation Using the Semi-Inverse Method and the Exp-Function Method
    Liu, Wenjun
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2009, 64 (11): : 709 - 712
  • [10] Traveling solitary wave solutions to the generalized Boussinesq equation
    Feng, ZS
    [J]. WAVE MOTION, 2003, 37 (01) : 17 - 23