Variable selection with neural networks

被引:56
|
作者
Cibas, T
Soulie, FF
Gallinari, P
Raudys, S
机构
[1] UNIV PARIS 06, IBP, LAFORIA, F-75252 PARIS 05, FRANCE
[2] UNIV PARIS 11, LRI, F-91405 ORSAY, FRANCE
[3] SLIGOS, F-92142 CLAMART, FRANCE
[4] INST MATH INFORMAT, DEPT DATA ANAL, LT-2600 VILNIUS, LITHUANIA
关键词
variable selection; regularization; neural network pruning; dimensionality reduction;
D O I
10.1016/0925-2312(95)00121-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present 3 different neural network-based methods to perform variable selection. OCD - Optimal Cell Damage - is a pruning method, which evaluates the usefulness of a variable and prunes the least useful ones (it is related to the Optimal Brain Damage method of Le Cun et al.). Regularization theory proposes to constrain estimators by adding a term to the cost function used to train a neural network. In the Bayesian framework, this additional term can be interpreted as the log prior to the weights distribution. We propose to use two priors (a Gaussian and a Gaussian mixture) and show that this regularization approach allows to select efficient subsets of variables. Our methods are compared to conventional statistical selection procedures and are shown to significantly improve on that.
引用
收藏
页码:223 / 248
页数:26
相关论文
共 50 条
  • [1] THE USE OF NEURAL NETWORKS FOR VARIABLE SELECTION IN QSAR
    WIKEL, JH
    DOW, ER
    [J]. BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 1993, 3 (04) : 645 - 651
  • [2] USE OF NEURAL NETWORKS FOR VARIABLE SELECTION IN QSAR
    DOW, ER
    WIKEL, JH
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1992, 203 : 39 - COMP
  • [3] Variable selection for neural networks in multivariate calibration
    Despagne, F
    Massart, DL
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1998, 40 (02) : 145 - 163
  • [4] Nonlinear Variable Selection via Deep Neural Networks
    Chen, Yao
    Gao, Qingyi
    Liang, Faming
    Wang, Xiao
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (02) : 484 - 492
  • [5] Information-theoretic variable selection in neural networks
    Kamimura, Ryotaro
    Yoshida, Fumihiko
    Toshie, Yamashita
    Kitajima, Ryozo
    [J]. 2007 IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTATIONAL INTELLIGENCE, VOLS 1 AND 2, 2007, : 222 - +
  • [6] Variable selection using feedforward and recurrent neural networks
    Munoz, A
    Czernichow, T
    [J]. ENGINEERING INTELLIGENT SYSTEMS FOR ELECTRICAL ENGINEERING AND COMMUNICATIONS, 1998, 6 (02): : 91 - 102
  • [7] Bayesian neural networks with variable selection for prediction of genotypic values
    Giel H. H. van Bergen
    Pascal Duenk
    Cornelis A. Albers
    Piter Bijma
    Mario P. L. Calus
    Yvonne C. J. Wientjes
    Hilbert J. Kappen
    [J]. Genetics Selection Evolution, 52
  • [8] Variable selection for multivariate time series prediction with neural networks
    Han, Min
    Wei, Ru
    [J]. NEURAL INFORMATION PROCESSING, PART I, 2008, 4984 : 415 - 425
  • [9] Bayesian neural networks with variable selection for prediction of genotypic values
    van Bergen, Giel H. H.
    Duenk, Pascal
    Albers, Cornelis A.
    Bijma, Piter
    Calus, Mario P. L.
    Wientjes, Yvonne C. J.
    Kappen, Hilbert J.
    [J]. GENETICS SELECTION EVOLUTION, 2020, 52 (01) : 26
  • [10] The automatic model selection and variable kernel width for RBF neural networks
    Zhou, Peng
    Li, Dehua
    Wu, Hong
    Cheng, Feng
    [J]. NEUROCOMPUTING, 2011, 74 (17) : 3628 - 3637