Separation of cognitive domains to improve prediction of progression from mild cognitive impairment to Alzheimer's disease

被引:4
|
作者
Hendrix, Suzanne B. [1 ]
Welsh-Bohmer, Kathleen A. [2 ]
机构
[1] Pentara Corp, Salt Lake City, UT 84109 USA
[2] Duke Univ, Joseph & Kathleen Bryan Alzheimers Dis Res Ctr Br, Durham, NC 27705 USA
来源
ALZHEIMERS RESEARCH & THERAPY | 2013年 / 5卷 / 03期
关键词
Mild Cognitive Impairment; Cognitive Domain; Mild Cognitive Impairment Subject; Early Population; Bayesian Statistical Model;
D O I
10.1186/alzrt176
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Addressing causes of heterogeneity in cognitive outcomes is becoming more critical as Alzheimer's disease (AD) research focuses on earlier disease. One of the causes of this heterogeneity may be that individuals with deficiencies in different cognitive domains may perform similarly on a neuropsychological (NP) test for very different reasons. Tatsuoka and colleagues have applied a Bayesian model in order to integrate knowledge about cognitive domains relevant to each NP test with the observed outcomes from the Alzheimer's Disease Neuroimaging Initiative (ADNI) mild cognitive impairment data. This approach resulted in better prediction of AD diagnosis than more traditional approaches.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Separation of cognitive domains to improve prediction of progression from mild cognitive impairment to Alzheimer's disease
    Suzanne B Hendrix
    Kathleen A Welsh-Bohmer
    Alzheimer's Research & Therapy, 5
  • [2] Lipidomic markers for the prediction of progression from mild cognitive impairment to Alzheimer's disease
    Li, Wenjing
    Zhou, Yinhua
    Luo, Zhaofan
    Tang, Rixin
    Sun, Yuxuan
    He, Qiangsheng
    Xia, Bin
    Lu, Kuiqing
    Hou, Qinghua
    Yuan, Jinqiu
    FASEB JOURNAL, 2023, 37 (07): : e22998
  • [3] Mild cognitive impairment and progression to dementia of Alzheimer's disease
    Quintes Steiner, Ana Beatriz
    Jacinto, Alessandro Ferrari
    De Sa Mayoral, Vania Ferreira
    Dozzi Brucki, Sonia Maria
    Citero, Vanessa De Albuquerque
    REVISTA DA ASSOCIACAO MEDICA BRASILEIRA, 2017, 63 (07): : 651 - 655
  • [4] Machine learning prediction of mild cognitive impairment and its progression to Alzheimer's disease
    Fouladvand, Sajjad
    Noshad, Morteza
    Periyakoil, V. J.
    Chen, Jonathan H.
    HEALTH SCIENCE REPORTS, 2023, 6 (10)
  • [5] Predictors of progression from mild cognitive impairment to Alzheimer disease
    Rozzini, Luca
    Chilovi, Barbara Vicini
    Trabucchi, Marco
    Padovani, Alessandro
    NEUROLOGY, 2008, 70 (09) : 735 - 735
  • [6] Predictors of progression from mild cognitive impairment to Alzheimer disease
    Palmer, K.
    Berger, A. K.
    Monastero, R.
    Winblad, B.
    Bachman, L.
    Fratiglioni, L.
    NEUROLOGY, 2007, 68 (19) : 1596 - 1602
  • [7] Markers for the Risk of Progression from Mild Cognitive Impairment to Alzheimer's Disease
    Buratti, Laura
    Balestrini, Simona
    Altamura, Claudia
    Viticchi, Giovanna
    Falsetti, Lorenzo
    Luzzi, Simona
    Provinciali, Leandro
    Vernieri, Fabrizio
    Silvestrini, Mauro
    JOURNAL OF ALZHEIMERS DISEASE, 2015, 45 (03) : 883 - 890
  • [8] Impact of cognitive reserve on the progression of mild cognitive impairment to Alzheimer's disease in Japan
    Osone, Akira
    Arai, Reiko
    Hakamada, Rina
    Shimoda, Kazutaka
    GERIATRICS & GERONTOLOGY INTERNATIONAL, 2015, 15 (04) : 428 - 434
  • [9] Rates of progression in mild cognitive impairment and early Alzheimer's disease
    Storandt, M
    Grant, EA
    Miller, JP
    Morris, JC
    NEUROLOGY, 2002, 59 (07) : 1034 - 1041
  • [10] Risk factors for mild cognitive impairment progression to Alzheimer's disease
    Ong, K.
    AUSTRALASIAN JOURNAL ON AGEING, 2016, 35 : 37 - 37