机构:
Univ Illinois, Dept Math, Urbana, IL 61801 USAUniv Illinois, Dept Math, Urbana, IL 61801 USA
Escobar, Laura
[1
]
Pechenik, Oliver
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
Univ Michigan, Dept Math, Ann Arbor, MI 48109 USAUniv Illinois, Dept Math, Urbana, IL 61801 USA
Pechenik, Oliver
[2
,3
]
Tenner, Bridget Eileen
论文数: 0引用数: 0
h-index: 0
机构:
De Paul Univ, Dept Math Sci, Chicago, IL 60614 USAUniv Illinois, Dept Math, Urbana, IL 61801 USA
Tenner, Bridget Eileen
[4
]
Yong, Alexander
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Math, Urbana, IL 61801 USAUniv Illinois, Dept Math, Urbana, IL 61801 USA
Yong, Alexander
[1
]
机构:
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[3] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[4] De Paul Univ, Dept Math Sci, Chicago, IL 60614 USA
S. Elnitsky (1997) gave an elegant bijection between rhombic tilings of 2n-gons and commutation classes of reduced words in the symmetric group on n letters. P. Magyar (1998) found an important construction of the Bott-Samelson varieties introduced by H. C. Hansen (1973) and M. Demazure (1974). We explain a natural connection between S. Elnitsky's and P. Magyar's results. This suggests using tilings to encapsulate Bott-Samelson data (in type A). It also indicates a geometric perspective on S. Elnitsky's bijection. We also extend this construction by assigning desingularizations of Schubert varieties to the zonotopal tilings considered by B. Tenner (2006).
机构:
Univ Toronto, Bahen Ctr, Dept Math, 40 St George St, Toronto, ON M5S 2E4, CanadaUniv Toronto, Bahen Ctr, Dept Math, 40 St George St, Toronto, ON M5S 2E4, Canada
Elek, Balazs
Lu, Jiang-Hua
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Math, Pokfulam Rd, Hong Kong, Peoples R ChinaUniv Toronto, Bahen Ctr, Dept Math, 40 St George St, Toronto, ON M5S 2E4, Canada