RHOMBIC TILINGS AND BOTT-SAMELSON VARIETIES

被引:4
|
作者
Escobar, Laura [1 ]
Pechenik, Oliver [2 ,3 ]
Tenner, Bridget Eileen [4 ]
Yong, Alexander [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[3] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[4] De Paul Univ, Dept Math Sci, Chicago, IL 60614 USA
关键词
CONVEXITY;
D O I
10.1090/proc/13869
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
S. Elnitsky (1997) gave an elegant bijection between rhombic tilings of 2n-gons and commutation classes of reduced words in the symmetric group on n letters. P. Magyar (1998) found an important construction of the Bott-Samelson varieties introduced by H. C. Hansen (1973) and M. Demazure (1974). We explain a natural connection between S. Elnitsky's and P. Magyar's results. This suggests using tilings to encapsulate Bott-Samelson data (in type A). It also indicates a geometric perspective on S. Elnitsky's bijection. We also extend this construction by assigning desingularizations of Schubert varieties to the zonotopal tilings considered by B. Tenner (2006).
引用
收藏
页码:1921 / 1935
页数:15
相关论文
共 50 条