Semantic Correspondence in the Wild

被引:1
|
作者
Pemasiri, Akila [1 ]
Kien Nguyen Thanh [1 ]
Sridharan, Sridha [1 ]
Fookes, Clinton [1 ]
机构
[1] Queensland Univ Technol, Speech Audio Image & Video Technol SAIVT Lab, Brisbane, Qld, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1109/WACV.2019.00126
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Semantic correspondence estimation where the object instances exhibits extreme deformations from one instance to the next is a challenging and important computer vision problem that needs to be solved. Unfortunately, all existing approaches require prior knowledge of the object classes which may not be available in the real world scenarios. This precludes the establishment of semantic correspondence across object classes in wild conditions when it is uncertain which classes will be of interest. In contrast, in this paper we formulate the semantic correspondence estimation task as a key point detection process in which image-to-class classification and image-to-image correspondence are solved simultaneously. Jointly modeling object identification and keypoint correspondence to attack the problem of semantic correspondence not only increases this approachs applicability in real world scenarios but also provides a seamless end-to-end process. Exploiting object regions in the process also enhances the accuracy while constraining the search space, thus improving overall efficiency. This new approach is compared with the state-of-the-art on public datasets including PF-PASCAL and Caltech-101 to validate its capability for improved semantic correspondence estimation in wild conditions.
引用
收藏
页码:1137 / 1146
页数:10
相关论文
共 50 条
  • [1] SCNet: Learning Semantic Correspondence
    Han, Kai
    Rezende, Rafael S.
    Ham, Bumsub
    Wong, Kwan-Yee K.
    Cho, Minsu
    Schmid, Cordelia
    Ponce, Jean
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 1849 - 1858
  • [2] Pyramidal Semantic Correspondence Networks
    Jeon, Sangryul
    Kim, Seungryong
    Min, Dongbo
    Sohn, Kwanghoon
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9102 - 9118
  • [3] Correspondence Theory of Semantic Information
    Milkowski, Marcin
    [J]. BRITISH JOURNAL FOR THE PHILOSOPHY OF SCIENCE, 2023, 74 (02): : 485 - 510
  • [4] Demystifying Unsupervised Semantic Correspondence Estimation
    Aygun, Mehmet
    Mac Aodha, Oisin
    [J]. COMPUTER VISION - ECCV 2022, PT XXX, 2022, 13690 : 125 - 142
  • [5] Semantic Correspondence as an Optimal Transport Problem
    Liu, Yanbin
    Zhu, Linchao
    Yamada, Makoto
    Yang, Yi
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 4462 - 4471
  • [6] Learning Contrastive Representation for Semantic Correspondence
    Xiao, Taihong
    Liu, Sifei
    De Mello, Shalini
    Yu, Zhiding
    Kautz, Jan
    Yang, Ming-Hsuan
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (05) : 1293 - 1309
  • [7] Learning Semantic Correspondence with Sparse Annotations
    Huang, Shuaiyi
    Yang, Luyu
    He, Bo
    Zhang, Songyang
    He, Xuming
    Shrivastava, Abhinav
    [J]. COMPUTER VISION - ECCV 2022, PT XIV, 2022, 13674 : 267 - 284
  • [8] EXPERIMENTAL TEXTING OF A SEMANTIC CORRESPONDENCE CRITERION
    YAKUSHIN, BV
    RODIONOV, LE
    DUBOVSKA.VI
    [J]. NAUCHNO-TEKHNICHESKAYA INFORMATSIYA SERIYA 2-INFORMATSIONNYE PROTSESSY I SISTEMY, 1970, (07): : 28 - &
  • [9] Probabilistic Model Distillation for Semantic Correspondence
    Li, Xin
    Fan, Deng-Ping
    Yang, Fan
    Luo, Ao
    Cheng, Hong
    Liu, Zicheng
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 7501 - 7510
  • [10] Learning Contrastive Representation for Semantic Correspondence
    Taihong Xiao
    Sifei Liu
    Shalini De Mello
    Zhiding Yu
    Jan Kautz
    Ming-Hsuan Yang
    [J]. International Journal of Computer Vision, 2022, 130 : 1293 - 1309