BERRY PHASE IN COUPLED TWO-LEVEL SYSTEMS

被引:5
|
作者
Zhang, X. Y. [1 ]
Teng, J. H. [1 ]
Yi, X. X. [1 ]
机构
[1] Dalian Univ Technol, Sch Phys & Optoelect Technol, Dalian 116024, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2013年 / 27卷 / 12期
关键词
Berry phase; adiabatic evolution; adiabatic condition; GEOMETRIC QUANTUM COMPUTATION;
D O I
10.1142/S0217984913500887
中图分类号
O59 [应用物理学];
学科分类号
摘要
The application of geometric phases into robust control of quantal systems has triggered exploration of the geometric phase for coupled subsystems. Earlier studies have mainly focused on the situation where the external control parameters are in the free Hamiltonian of the subsystems, i.e. the controls exert only on the individual subsystems. Here we consider another circumstance that we can control the coupling ge(i phi) between the subsystems. By changing only the phase phi in the coupling constant, we derive the Berry phase acquired by the system and compare it to the geometric phase acquired by changing the coupling strength g. We find that the asymptotic behavior of the Berry phase depends on the relative Rabi frequency of the two subsystems, and it approaches pi when the amplitude of the coupling tends to infinity.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Berry's phase in the two-level model
    Aguiar Pinto, A. C.
    Moutinho, M.
    Thomaz, M. T.
    BRAZILIAN JOURNAL OF PHYSICS, 2009, 39 (02) : 326 - 330
  • [2] Berry phase in a generalized nonlinear two-level system
    刘继兵
    李家华
    宋佩君
    李伟斌
    Chinese Physics B, 2008, 17 (01) : 38 - 42
  • [3] Berry phase in a generalized nonlinear two-level system
    Liu Ji-Bing
    Li Jia-Hua
    Song Pei-Jun
    Li Wei-Bin
    CHINESE PHYSICS B, 2008, 17 (01) : 38 - 42
  • [4] Berry phase effects in two-level and three-level atoms
    Y. Ben-Aryeh
    Optics and Spectroscopy, 2003, 94 : 724 - 729
  • [5] Berry phase effects in two-level and three-level atoms
    Ben-Aryeh, Y
    OPTICS AND SPECTROSCOPY, 2003, 94 (05) : 724 - 729
  • [6] Dissipative phase transition in a pair of coupled noisy two-level systems
    Bonart, Julius
    PHYSICAL REVIEW B, 2013, 88 (12)
  • [7] Berry's phase for a twice degenerated two-level system
    Pletyukhov, MV
    Tolkachev, EA
    DOKLADY AKADEMII NAUK BELARUSI, 1998, 42 (06): : 50 - 54
  • [8] Analytic dynamics of coupled two-level systems
    Unanyan, RG
    Stenholm, S
    PHYSICAL REVIEW A, 2002, 66 (03): : 321081 - 321086
  • [9] Multilevel spectroscopy of two-level systems coupled to a dc SQUID phase qubit
    Palomaki, T. A.
    Dutta, S. K.
    Lewis, R. M.
    Przybysz, A. J.
    Paik, Hanhee
    Cooper, B. K.
    Kwon, H.
    Anderson, J. R.
    Lobb, C. J.
    Wellstood, F. C.
    Tiesinga, E.
    PHYSICAL REVIEW B, 2010, 81 (14):
  • [10] Excitation transfer in two two-level systems coupled to an oscillator
    Hagelstein, P. L.
    Chaudhary, I. U.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2008, 41 (13)