Multiexponential maps in Carnot groups with applications to convexity and differentiability

被引:3
|
作者
Montanari, Annamaria [1 ]
Morbidelli, Daniele [1 ]
机构
[1] Univ Bologna, Dipartimento Matemat, Bologna, Italy
关键词
Carnot groups; SubRiemannian distance; Horizontal convexity; Cone property; Pansu differentiability; GRAPHS;
D O I
10.1007/s10231-020-00994-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze some properties of a class ofmultiexponential mapsappearing naturally in the geometric analysis of Carnot groups. We will see that such maps can be useful in at least two interesting problems: first, in relation to the analysis of some regularity properties of horizontally convex sets. Then, we will show that our multiexponential maps can be used to prove thePansu differentiabilityof the subRiemannian distance from a fixed point.
引用
收藏
页码:253 / 272
页数:20
相关论文
共 50 条
  • [1] Multiexponential maps in Carnot groups with applications to convexity and differentiability
    Annamaria Montanari
    Daniele Morbidelli
    Annali di Matematica Pura ed Applicata (1923 -), 2021, 200 : 253 - 272
  • [2] Differentiability of maps of Carnot groups of Sobolev classes
    Vodop'yanov, SK
    SBORNIK MATHEMATICS, 2003, 194 (5-6) : 857 - 877
  • [3] Notions of convexity in Carnot groups
    Danielli, D
    Garofalo, N
    Nhieu, DM
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2003, 11 (02) : 263 - 341
  • [4] c Horizontal Convexity on Carnot Groups
    Calogero, A.
    Pini, R.
    JOURNAL OF CONVEX ANALYSIS, 2012, 19 (02) : 541 - 567
  • [5] Quasiregular maps on Carnot groups
    Juha Heinonen
    Ilkka Holopainen
    The Journal of Geometric Analysis, 1997, 7 (1): : 109 - 148
  • [6] CONFORMAL MAPS OF CARNOT GROUPS
    Cowling, Michael G.
    Ottazzi, Alessandro
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (01) : 203 - 213
  • [7] Quasiregular maps on Carnot groups
    Heinonen, Juha
    Holopainen, Ilkka
    Journal of Geometric Analysis, 1997, 7 (01): : 109 - 148
  • [8] A NEW CHARACTERIZATION OF CONVEXITY IN FREE CARNOT GROUPS
    Bonfiglioli, Andrea
    Lanconelli, Ermanno
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (09) : 3263 - 3273
  • [9] Infinite-Dimensional Carnot Groups and Gateaux Differentiability
    Le Donne, Enrico
    Li, Sean
    Moisala, Terhi
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (02) : 1756 - 1785
  • [10] Differentiability and Approximate Differentiability for Intrinsic Lipschitz Functions in Carnot Groups and a Rademacher Theorem
    Franchi, Bruno
    Marchi, Marco
    Serapioni, Raul Paolo
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2014, 2 (01): : 258 - 281