Fenamates inhibit human sodium channel Nav1.7 and Nav1.8

被引:15
|
作者
Sun, Jian-Fang [1 ]
Xu, Yi-Jia [2 ]
Kong, Xiao-Hua [2 ]
Su, Yang [3 ]
Wang, Zhan-You [1 ]
机构
[1] Northeastern Univ, Coll Life & Hlth Sci, Shenyang 110169, Liaoning, Peoples R China
[2] Shenyang Pharmaceut Univ, Sch Life Sci & Biopharmaceut Sci, Shenyang 110016, Peoples R China
[3] China Med Univ, Shengjing Hosp, Dept Gen Surg, Shenyang 110004, Liaoning, Peoples R China
关键词
Fenamates; Pain; Nav1.7; Nav1.8; ANTIINFLAMMATORY DRUGS; SMOOTH-MUSCLE; NA(V)1.7; BLOCKERS; CURRENTS; GENE; DICLOFENAC; ACTIVATION; CHLORIDE; REVEALS;
D O I
10.1016/j.neulet.2018.12.008
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Fenamates are N-substituted anthranilic acid derivatives, clinically used as nonsteroidal anti-inflammatory drugs (NSAIDs) in fever, pain and inflammation treatments. Previous studies have shown that they are also modulators of diverse ion channels, exhibiting either activation or inhibitory effects. However, the effects of fenamates on sodium channel subtypes are still unknown. In this study, fenamates, including mefenamic acid, flufenamic acid and tolfenamic acid, were examined by whole-cell patch clamp techniques on the sodium channels hNav1.7 and hNav1.8, which are closely associated with pain. The results showed that the mefenamic acid, flufenamic acid, and tolfenamic acid inhibited the peak currents of hNav1.7 and hNav1.8 in CHO cells stably expressing hNav1.7 and hNav1.8. However, much lighter inhibition effects of hNav1.8 were registered in the experimental system. Furthermore, the mefenamic acid, flufenamic acid and tolfenamic acid significantly affected the inactivation processes of hNav1.7 and hNav1.8 with I-V curves left-shifted to hyperpolarized direction. These data indicate that the inhibition effects of Nav1.7 and Nav1.8 by mefenamic acid, flufenamic acid and tolfenamic acid might contribute to their analgesic activity in addition to their inhibition of cyclooxygenase. These findings provide a basis for further studies in the discovery of other potential targets for NSAIDs.
引用
收藏
页码:67 / 73
页数:7
相关论文
共 50 条
  • [1] Sodium channels Nav1.7, Nav1.8 and pain; two distinct mechanisms for Nav1.7 null analgesia
    Iseppon, Federico
    Kanellopoulos, Alexandros H.
    Tian, Naxi
    Zhou, Jun
    Caan, Gozde
    Chiozzi, Riccardo
    Thalassinos, Konstantinos
    Cubuk, Cankut
    Lewis, Myles J.
    Cox, James J.
    Zhao, Jing
    Woods, Christopher G.
    Wood, John N.
    NEUROBIOLOGY OF PAIN, 2024, 16
  • [2] The insecticide deltamethrin enhances sodium channel slow inactivation of human Nav1.9, Nav1.8 and Nav1.7
    Bothe, Stefanie Nicole
    Lampert, Angelika
    TOXICOLOGY AND APPLIED PHARMACOLOGY, 2021, 428
  • [3] Nav1.7 and Nav1.8: Role in the pathophysiology of pain
    Hameed, Shaila
    MOLECULAR PAIN, 2019, 15
  • [4] Gating properties of Nav1.7 and Nav1.8 peripheral nerve sodium channels
    Vijayaragavan, K
    O'Leary, ME
    Chahine, M
    JOURNAL OF NEUROSCIENCE, 2001, 21 (20): : 7909 - 7918
  • [5] PKC and PKA modulation of Nav1.7 and Nav1.8 nerve sodium channels.
    Vijayaragavan, K
    Chahine, M
    BIOPHYSICAL JOURNAL, 2003, 84 (02) : 25A - 25A
  • [6] Probing the Contribution of Nav1.7 and Nav1.8 to Cold Tolerance in Hibernators
    Hoffstaetter, Lydia J.
    Tonsfeldt, Karen J.
    Matos-Cruz, Vanessa
    Bagriantsev, Slav N.
    Gracheva, Elena O.
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 318A - 318A
  • [7] Differential modulation of Nav1.7 and Nav1.8 channels by antidepressant drugs
    Theriault, Olivier
    Poulin, Hugo
    Beaulieu, Jean-Martin
    Chahine, Mohamed
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2015, 764 : 395 - 403
  • [8] Effects of sevoflurane on voltage-gated sodium channel Nav1.8, Nav1.7, and Nav1.4 expressed in Xenopus oocytes
    Toru Yokoyama
    Kouichiro Minami
    Yuka Sudo
    Takafumi Horishita
    Junichi Ogata
    Toshihiko Yanagita
    Yasuhito Uezono
    Journal of Anesthesia, 2011, 25
  • [9] Unique electrophysiological property of a novel Nav1.7, Nav1.8, and Nav1.9 sodium channel blocker, ANP-230
    Kamei, Tatsuya
    Kudo, Takehiro
    Yamane, Hana
    Ishibashi, Fumiaki
    Takada, Yoshinori
    Honda, Shigeyuki
    Maezawa, Yasuyo
    Ikeda, Kazuhito
    Oyamada, Yoshihiro
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2024, 721
  • [10] Effects of sevoflurane on voltage-gated sodium channel Nav1.8, Nav1.7, and Nav1.4 expressed in Xenopus oocytes
    Yokoyama, Toru
    Minami, Kouichiro
    Sudo, Yuka
    Horishita, Takafumi
    Ogata, Junichi
    Yanagita, Toshihiko
    Uezono, Yasuhito
    JOURNAL OF ANESTHESIA, 2011, 25 (04) : 609 - 613