Kinetic electron closures for electromagnetic simulation of drift and shear-Alfven waves. I.

被引:19
|
作者
Cohen, BI [1 ]
Dimits, AM
Nevins, WM
Chen, Y
Parker, S
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
关键词
D O I
10.1063/1.1428759
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The electromagnetic hybrid scheme of Chen and Parker (fluid electrons and gyrokinetic ions) [Phys. Plasmas 8, 441 (2001)] is extended to include a kinetic electron closure valid for beta (e)>m(e)/m(i) (beta (e) is the ratio of the plasma electron pressure to the magnetic field energy density). The new schemes incorporate partially linearized (deltaf ) drift-kinetic electrons whose pressure and number density moments are used to close the fluid momentum equation for the electron fluid (Ohm's law) using the departure of the perturbed deltaf kinetic pressure from the isothermal perturbed pressure response. Comparisons are made between the results of the hybrid schemes with kinetic electron closure and a conventional deltaf algorithm for drift-kinetic electrons and gyrokinetic ions in a two-dimensional slab model. The test cases used are small-amplitude kinetic shear-Alfven waves with electron Landau damping, the ion-temperature-gradient instability, and the collisionless drift instability (universal mode) in an unsheared slab as a function of the plasma beta (e). The hybrid schemes have the desirable properties that they do not require that the mesh size perpendicular to the applied magnetic field be smaller than the collisionless skin depth c/omega (pe) and naturally accommodate zonal flow physics (radial modes) with nonadiabatic electron effects. The most successful of the new algorithms introduced gives very good results for beta (e)>m(e)/m(i). (C) 2002 American Institute of Physics.
引用
收藏
页码:251 / 262
页数:12
相关论文
共 31 条
  • [1] Kinetic electron closures for electromagnetic simulation of drift and shear-Alfven waves. II
    Cohen, BI
    Dimits, AM
    Nevins, WM
    Chen, Y
    Parker, S
    [J]. PHYSICS OF PLASMAS, 2002, 9 (05) : 1915 - 1924
  • [2] Shear-Alfven waves in gyrokinetic particle simulation
    Lee, WW
    [J]. THEORY OF FUSION PLASMAS, 2000, : 171 - 183
  • [3] SCATTERING AND FILAMENTATION OF ELECTROMAGNETIC-WAVES BY KINETIC DRIFT ALFVEN WAVES
    SAXENA, MK
    [J]. PHYSICA SCRIPTA, 1983, 28 (06): : 620 - 624
  • [4] Vlasov simulation of kinetic shear Alfven waves
    Dannert, T
    Jenko, F
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2004, 163 (02) : 67 - 78
  • [5] 2-DIMENSIONAL SPATIAL STRUCTURE OF DRIFT, TRAPPED-ELECTRON, AND SHEAR-ALFVEN MODES
    REWOLDT, G
    TANG, WM
    FRIEMAN, EA
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (09): : 1142 - 1142
  • [6] Kinetic Simulations of the Interruption of Large-Amplitude Shear-Alfven Waves in a High-β Plasma
    Squire, J.
    Kunz, M. W.
    Quataert, E.
    Schekochihin, A. A.
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (15)
  • [7] Kinetic wave equations for drift and shear Alfven waves in axisymmetric toroidal plasmas
    Brambilla, M
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2001, 43 (04) : 483 - 506
  • [8] Electromagnetic waves and instabilities in magnetoplasmas:: Ion and electron dynamics of whistler, Alfven and drift waves
    Grulke, O
    Franck, CM
    Klinger, T
    Schröder, C
    Stark, A
    Windisch, T
    Zalach, J
    [J]. CONTRIBUTIONS TO PLASMA PHYSICS, 2005, 45 (5-6) : 385 - 395
  • [9] Transverse dynamics of dispersive Alfven waves. I. Direct numerical evidence of filamentation
    Laveder, D
    Passot, T
    Sulem, PL
    [J]. PHYSICS OF PLASMAS, 2002, 9 (01) : 293 - 304
  • [10] Kinetic dispersion of Langmuir waves. I. The Langmuir decay instability
    Palastro, J. P.
    Williams, E. A.
    Hinkel, D. E.
    Divol, L.
    Strozzi, D. J.
    [J]. PHYSICS OF PLASMAS, 2009, 16 (09)