Using machine learning techniques for Data Quality Monitoring in CMS and ALICE

被引:0
|
作者
Deja, Kamil [1 ]
机构
[1] Warsaw Univ Technol, Inst Comp Sci, Warsaw, Poland
来源
7TH ANNUAL CONFERENCE ON LARGE HADRON COLLIDER PHYSICS, LHCP2019 | 2019年
关键词
D O I
暂无
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Data Quality Assurance plays an important role in all high-energy physics experiments. Currently used methods rely heavily on manual labour and human expert judgements. Hence, multiple attempts are being undertaken to develop automatic solutions especially based on machine learning techniques as the core part of Data Quality Monitoring systems. However, anomalies caused by detector malfunctioning or sub-optimal data processing are difficult to enumerate a priori and occur rarely, making it difficult to use supervised classification. Therefore, researchers from different experiments including ALICE and CMS work extensively on semi-supervised and unsupervised algorithms in order to distinguish potential outliers without manually assigned labels. In this contribution, we will discuss several projects whose that aim at solve this task. Machine learning based solutions bring several advantages and may provide fast and reliable data quality assurance, simultaneously reducing the manpower requirements. A good example of this approach is a model based on deep autoencoder employed in the CMS experiment which has been successfully qualified on CMS data collected during the 2016 LHC run. Tests indicate that this solution is able to detect anomalies with high accuracy and low fake rate when compared against the outcome of the manual labelling by experts. Researchers from the ALICE experiment are currently working on a similar task. They intend to perform a data quality checks in much higher granularity. The current approach is limited to run classification based on manually set cut-offs on descriptive data statistics. More sophisticated machine learning based methods may enable more accurate data selection, on high granularity level of 15-minutes data acquisition periods.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Machine Learning applications for Data Quality Monitoring and Data Certification within CMS
    Wachirapusitanand, Vichayanun
    20TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH, 2023, 2438
  • [2] A new approach for CMS RPC current monitoring using Machine Learning techniques
    Samalan, A.
    Tytgat, M.
    Zaganidis, N.
    Alves, G. A.
    Marujo, F.
    Da Silva De Araujo, F. Torres
    Da Costa, E. M.
    De Jesus Damiao, D.
    Nogima, H.
    Santoro, A.
    Fonseca De Souza, S.
    Aleksandrov, A.
    Hadjiiska, R.
    Iaydjiev, P.
    Rodozov, M.
    Shopova, M.
    Sultanov, G.
    Bonchev, M.
    Dimitrov, A.
    Litov, L.
    Pavlov, B.
    Petkov, P.
    Petrov, A.
    Qian, S. J.
    Bernal, C.
    Cabrera, A.
    Fraga, J.
    Sarkar, A.
    Elsayed, S.
    Assran, Y.
    El Sawy, M.
    Mahmoud, M. A.
    Mohammed, Y.
    Combaret, C.
    Gouzevitch, M.
    Grenier, G.
    Laktineh, I
    Mirabito, L.
    Shchablo, K.
    Bagaturia, I
    Lomidze, D.
    Lomidze, I
    Bhatnagar, V
    Gupta, R.
    Kumari, P.
    Singh, J.
    Amoozegar, V
    Boghrati, B.
    Ebraimi, M.
    Ghasemi, R.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (10):
  • [3] The ALICE data quality monitoring
    von Haller, B.
    Roukoutakis, F.
    Chapeland, S.
    Altini, V.
    Carena, F.
    Carena, W.
    Barroso, V. Chibante
    Costa, F.
    Divia, R.
    Fuchs, U.
    Makhlyueva, I.
    Schossmaier, K.
    Soos, C.
    Vyvre, P. Vande
    17TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP09), 2010, 219
  • [4] Quality monitoring in multistage manufacturing systems by using machine learning techniques
    Ismail, Mohamed
    Mostafa, Noha A.
    El-assal, Ahmed
    JOURNAL OF INTELLIGENT MANUFACTURING, 2022, 33 (08) : 2471 - 2486
  • [5] Air Quality Monitoring Intelling System Using Machine Learning Techniques
    Rosero-Montalvo, Paul D.
    Caraguay-Procel, Jorge A.
    Jaramillo, Edgar D.
    Michilena-Calderon, Jaime M.
    Umaquinga-Criollo, Ana C.
    Mediavilla-Valverde, Mario
    Ruiz, Miguel A.
    Beltran, Luis A.
    Peluffo-Ordonez, D. H.
    PROCEEDINGS 3RD INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS AND COMPUTER SCIENCE (INCISCOS 2018), 2018, : 75 - 80
  • [6] Quality monitoring in multistage manufacturing systems by using machine learning techniques
    Mohamed Ismail
    Noha A. Mostafa
    Ahmed El-assal
    Journal of Intelligent Manufacturing, 2022, 33 : 2471 - 2486
  • [7] Machine Learning based tool for CMS RPC currents quality monitoring
    Shumka, E.
    Samalan, A.
    Tytgat, M.
    El Sawy, M.
    Alves, G. A.
    Marujo, F.
    Coelho, E. A.
    Da Costa, E. M.
    Nogima, H.
    Santoro, A.
    De Souza, S. Fonseca
    Damiao, D. De Jesus
    Thiel, M.
    Amarilo, K. Mota
    Ferreira Filho, M. Barroso
    Aleksandrov, A.
    Hadjiiska, R.
    Iaydjiev, P.
    Rodozov, M.
    Shopova, M.
    Soultanov, G.
    Dimitrov, A.
    Litov, L.
    Pavlov, B.
    Petkov, P.
    Petrov, A.
    Qian, S. J.
    Kou, H.
    Liu, Z. -A.
    Zhao, J.
    Song, J.
    Hou, Q.
    Diao, W.
    Cao, P.
    Avila, C.
    Barbosa, D.
    Cabrera, A.
    Florez, A.
    Fraga, J.
    Reyes, J.
    Assran, Y.
    Mahmoud, M. A.
    Mohammed, Y.
    Crotty, I.
    Laktineh, I.
    Grenier, G.
    Gouzevitch, M.
    Mirabito, L.
    Shchablo, K.
    Bagaturia, I.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2023, 1054
  • [8] Wastewater quality monitoring system using sensor fusion and machine learning techniques
    Qin, Xusong
    Gao, Furong
    Chen, Guohua
    WATER RESEARCH, 2012, 46 (04) : 1133 - 1144
  • [9] Streamlining the monitoring and assessment of irrigation groundwater quality using machine learning techniques
    Makhlouf, Ahmed
    El-Rawy, Mustafa
    Kanae, Shinjiro
    Sharaan, Mahmoud
    Nada, Ali
    Ibrahim, Mona G.
    ENVIRONMENTAL EARTH SCIENCES, 2025, 84 (05)
  • [10] The ALICE data quality monitoring system
    von Haller, B.
    Telesca, A.
    Chapeland, S.
    Carena, F.
    Carena, W.
    Barroso, V. Chibante
    Costa, F.
    Denes, E.
    Divia, R.
    Fuchs, U.
    Simonetti, G.
    Soos, C.
    Vande Vyvre, P.
    INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2010), 2011, 331