Weyl asymptotics: From closed to open systems

被引:27
|
作者
Potzuweit, A. [1 ]
Weich, T. [1 ,2 ]
Barkhofen, S. [1 ]
Kuhl, U. [1 ,3 ]
Stoeckmann, H. -J. [1 ]
Zworski, M. [4 ]
机构
[1] Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
[2] Univ Marburg, Fachbereich Math, D-35032 Marburg, Germany
[3] Univ Nice Sophia Antipolis, CNRS, Lab Phys Matiere Condensee, UMR 7336, F-06108 Nice, France
[4] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 06期
基金
美国国家科学基金会;
关键词
ZETA-FUNCTION; STATISTICAL PROPERTIES; QUANTUM RESONANCES; ELLIPTIC-OPERATORS; WAVE-EQUATION; MICROWAVE; DENSITY; DIMENSION; QUANTIZATION; SCATTERING;
D O I
10.1103/PhysRevE.86.066205
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present microwave experiments on the symmetry reduced five-disk billiard studying the transition from a closed to an open system. The measured microwave reflection signal is analyzed by means of the harmonic inversion and the counting function of the resulting resonances is studied. For the closed system this counting function shows the Weyl asymptotic with a leading exponent equal to 2. By opening the system successively this exponent decreases smoothly to a noninteger value. For the open systems the extraction of resonances by the harmonic inversion becomes more challenging and the arising difficulties are discussed. The results can be interpreted as a first experimental indication for the fractal Weyl conjecture for resonances. DOI: 10.1103/PhysRevE.86.066205
引用
收藏
页数:8
相关论文
共 50 条
  • [1] FROM CLOSED TEACHING TO OPEN LEARNING SYSTEMS
    KEEFE, JW
    NOTRE DAME JOURNAL OF EDUCATION, 1976, 7 (02): : 168 - 174
  • [2] The Weyl group and asymptotics: All supergravity billiards have a closed form general integral
    Fre, Pietro
    Sorin, Alexander S.
    NUCLEAR PHYSICS B, 2009, 815 (03) : 430 - 494
  • [3] PT Symmetry and Weyl Asymptotics
    Sjöstrand, Johannes
    Springer Proceedings in Mathematics, 2012, 16 : 299 - 308
  • [4] Weyl asymptotics for Hanoi attractors
    Ruiz, Patricia Alonso
    Freiberg, Uta R.
    FORUM MATHEMATICUM, 2017, 29 (05) : 1003 - 1021
  • [5] Asymptotics for the Weyl quantized phase
    Hennings, M. A.
    Smith, T. B.
    Dubin, D. A.
    1996,
  • [7] Asymptotics for the Weyl quantized phase
    Hennings, MA
    Smith, TB
    Dubin, DA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (23): : 6779 - 6807
  • [8] Fractal Weyl laws for chaotic open systems
    Lu, WT
    Sridhar, S
    Zworski, M
    PHYSICAL REVIEW LETTERS, 2003, 91 (15)
  • [9] THE MULTIPLIER IN CLOSED AND OPEN SYSTEMS
    Shackle, G. L. S.
    OXFORD ECONOMIC PAPERS-NEW SERIES, 1939, 2 (01): : 135 - 144
  • [10] Bhaskar on open and closed systems
    Spurrett, D
    SOUTH AFRICAN JOURNAL OF PHILOSOPHY, 2000, 19 (03) : 188 - 208