Graph Regularized Nonnegative Matrix Factorization with Sample Diversity for Image Representation

被引:14
|
作者
Wang, Changpeng [1 ]
Song, Xueli [1 ]
Zhang, Jiangshe [2 ]
机构
[1] Changan Univ, Sch Math & Informat Sci, Xian 710064, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonnegative matrix factorization; Semi-supervised learning; Sample diversity; Clustering; RECOGNITION; OBJECTS; PARTS;
D O I
10.1016/j.engappai.2017.10.018
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nonnegative Matrix Factorization (NMF) is an effective algorithm for dimensionality reduction and feature extraction in data mining and computer vision. It incorporates the nonnegativity constraints into the factorization, and thus obtains a parts-based representation. However, the existing NMF variants cannot fully utilize the limited label information and neglect the unlabeled sample diversity. Therefore, we propose a novel NMF method, called Graph Regularized Nonnegative Matrix Factorization with Sample Diversity (GNMFSD), which make use of the label information and sample diversity to facilitate the representation learning. Specifically, it firstly incorporates a graph regularization term that encode the intrinsic geometrical information. Moreover, two reconstruction regularization terms based on labeled samples and virtual samples are also presented, which potentially improve the new representations to be more discriminative and effective. The iterative updating optimization scheme is developed to solve the objective function of GNMFSD and the convergence of our scheme is also proven. The experiment results on standard image databases verify the effectiveness of our proposed method in image clustering. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:32 / 39
页数:8
相关论文
共 50 条
  • [1] Graph Regularized Nonnegative Matrix Factorization for Data Representation
    Cai, Deng
    He, Xiaofei
    Han, Jiawei
    Huang, Thomas S.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) : 1548 - 1560
  • [2] Adaptive graph regularized nonnegative matrix factorization for data representation
    Lin Zhang
    Zhonghua Liu
    Jiexin Pu
    Bin Song
    [J]. Applied Intelligence, 2020, 50 : 438 - 447
  • [3] Error Graph Regularized Nonnegative Matrix Factorization for Data Representation
    Zhu, Qiang
    Zhou, Meijun
    Liu, Junping
    [J]. NEURAL PROCESSING LETTERS, 2023, 55 (06) : 7321 - 7335
  • [4] Error Graph Regularized Nonnegative Matrix Factorization for Data Representation
    Qiang Zhu
    Meijun Zhou
    Junping Liu
    [J]. Neural Processing Letters, 2023, 55 : 7321 - 7335
  • [5] Adaptive graph regularized nonnegative matrix factorization for data representation
    Zhang, Lin
    Liu, Zhonghua
    Pu, Jiexin
    Song, Bin
    [J]. APPLIED INTELLIGENCE, 2020, 50 (02) : 438 - 447
  • [6] Dual Graph Regularized Sparse Nonnegative Matrix Factorization for Data Representation
    Peng, Siyuan
    Ser, Wee
    Lin, Zhiping
    Chen, Badong
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2019,
  • [7] Adversarial Graph Regularized Deep Nonnegative Matrix Factorization for Data Representation
    Li, Songtao
    Li, Weigang
    Li, Yang
    [J]. IEEE ACCESS, 2022, 10 : 86445 - 86457
  • [8] Semi-supervised graph regularized nonnegative matrix factorization with local coordinate for image representation
    Li, Huirong
    Gao, Yuelin
    Liu, Junmin
    Zhang, Jiangshe
    Li, Chao
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2022, 102
  • [9] Robust Graph Regularized Nonnegative Matrix Factorization
    Huang, Qi
    Zhang, Guodao
    Yin, Xuesong
    Wang, Yigang
    [J]. IEEE ACCESS, 2022, 10 : 86962 - 86978
  • [10] Multiple graph regularized nonnegative matrix factorization
    Wang, Jim Jing-Yan
    Bensmail, Halima
    Gao, Xin
    [J]. PATTERN RECOGNITION, 2013, 46 (10) : 2840 - 2847