A measurable Lawson criterion and hydro-equivalent curves for inertial confinement fusion

被引:74
|
作者
Zhou, C. D. [1 ,2 ]
Betti, R. [1 ,2 ,3 ]
机构
[1] Univ Rochester, Fus Sci Ctr, Rochester, NY 14623 USA
[2] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA
[3] Univ Rochester, Dept Mech Engn & Phys & Astron, Rochester, NY 14623 USA
关键词
D O I
10.1063/1.2998604
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
It is shown that the ignition condition (Lawson criterion) for inertial confinement fusion (ICF) can be cast in a form dependent on the only two parameters of the compressed fuel assembly that can be measured with existing techniques: the hot spot ion temperature (T-i(h)) and the total areal density (rho R-tot), which includes the cold shell contribution. A marginal ignition curve is derived in the rho R-tot, T(i)h plane and current implosion experiments are compared with the ignition curve. On this plane, hydrodynamic equivalent curves show how a given implosion would perform with respect to the ignition condition when scaled up in the laser-driver energy. For 3 < < T-i(h)>(n) < 6 keV, an approximate form of the ignition condition (typical of laser-driven ICF) is (T-i(h))(n)(2.6)center dot <rho R-tot >(n)> 50 keV(2.6)center dot g/cm(2), where (rho R-tot), and (T-i(h)) n are the burn-averaged total areal density and hot spot ion temperature, respectively. Both quantities are calculated without accounting for the alpha-particle energy deposition. Such a criterion can be used to determine how surrogate D-2 and subignited DT target implosions perform with respect to the one-dimensional ignition threshold. c 2008 American Institute of Physics. [DOI: 10.1063/1.2998604]
引用
收藏
页数:12
相关论文
共 9 条
  • [1] A measurable Lawson criterion and hydro-equivalent curves for inertial confinement fusion (vol 15, 102707, 2008)
    Zhou, C. D.
    Betti, R.
    [J]. PHYSICS OF PLASMAS, 2009, 16 (07)
  • [2] Generalized Measurable Ignition Criterion for Inertial Confinement Fusion
    Chang, Py.
    Betti, R.
    Spears, B. K.
    Anderson, K. S.
    Edwards, J.
    Fatenejad, M.
    Lindl, J. D.
    McCrory, R. L.
    Nora, R.
    Shvarts, D.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (13)
  • [3] Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility
    Nora, R.
    Betti, R.
    Anderson, K. S.
    Shvydky, A.
    Bose, A.
    Woo, K. M.
    Christopherson, A. R.
    Marozas, J. A.
    Collins, T. J. B.
    Radha, P. B.
    Hu, S. X.
    Epstein, R.
    Marshall, F. J.
    McCrory, R. L.
    Sangster, T. C.
    Meyerhofer, D. D.
    [J]. PHYSICS OF PLASMAS, 2014, 21 (05)
  • [4] Neutron yield and Lawson criterion for plasma with inertial electrostatic confinement
    Gus'kov, S. Yu
    Kurilenkov, Yu K.
    [J]. XXXI INTERNATIONAL CONFERENCE ON EQUATIONS OF STATE FOR MATTER (ELBRUS 2016), 2016, 774
  • [5] Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment
    Abu-Shawareb, H.
    Acree, R.
    Adams, P.
    Adams, J.
    Addis, B.
    Aden, R.
    Adrian, P.
    Afeyan, B. B.
    Aggleton, M.
    Aghaian, L.
    Aguirre, A.
    Aikens, D.
    Akre, J.
    Albert, F.
    Albrecht, M.
    Albright, B. J.
    Albritton, J.
    Alcala, J.
    Alday, C., Jr.
    Alessi, D. A.
    Alexander, N.
    Alfonso, J.
    Alfonso, N.
    Alger, E.
    Ali, S. J.
    Ali, Z. A.
    Alley, W. E.
    Amala, P.
    Amendt, P. A.
    Amick, P.
    Ammula, S.
    Amorin, C.
    Ampleford, D. J.
    Anderson, R. W.
    Anklam, T.
    Antipa, N.
    Appelbe, B.
    Aracne-Ruddle, C.
    Araya, E.
    Arend, M.
    Arnold, P.
    Arnold, T.
    Asay, J.
    Atherton, L. J.
    Atkinson, D.
    Atkinson, R.
    Auerbach, J. M.
    Austin, B.
    Auyang, L.
    Awwal, A. S.
    [J]. PHYSICAL REVIEW LETTERS, 2022, 129 (07)
  • [6] Design of an inertial fusion experiment exceeding the Lawson criterion for ignition
    Kritcher, A. L.
    Zylstra, A. B.
    Callahan, D. A.
    Hurricane, O. A.
    Weber, C. R.
    Clark, D. S.
    V. Young, C.
    Ralph, J. E.
    Casey, D. T.
    Pak, A.
    Landen, O. L.
    Bachmann, B.
    Baker, K. L.
    Hopkins, L. Berzak
    Bhandarkar, S. D.
    Biener, J.
    Bionta, R. M.
    Birge, N. W.
    Braun, T.
    Briggs, T. M.
    Celliers, P. M.
    Chen, H.
    Choate, C.
    Divol, L.
    Doeppner, T.
    Fittinghoff, D.
    Edwards, M. J.
    Johnson, M. Gatu
    Gharibyan, N.
    Haan, S.
    Hahn, K. D.
    Hartouni, E.
    Hinkel, D. E.
    Ho, D. D.
    Hohenberger, M.
    Holder, J. P.
    Huang, H.
    Izumi, N.
    Jeet, J.
    Jones, O.
    Kerr, S. M.
    Khan, S. F.
    Kleinrath, H. Geppert
    Kleinrath, V. Geppert
    Kong, C.
    Lamb, K. M.
    Le Pape, S.
    Lemos, N. C.
    Lindl, J. D.
    MacGowan, B. J.
    [J]. PHYSICAL REVIEW E, 2022, 106 (02)
  • [7] Atomic scale mixing for inertial confinement fusion associated hydro instabilities
    Melvin, J.
    Rao, P.
    Kaufman, R.
    Lim, H.
    Yu, Y.
    Glimm, J.
    Sharp, D. H.
    [J]. HIGH ENERGY DENSITY PHYSICS, 2013, 9 (02) : 288 - 296
  • [8] Demonstration of a hydrodynamically equivalent burning plasma in direct-drive inertial confinement fusion
    Gopalaswamy, V.
    Williams, C. A.
    Betti, R.
    Patel, D.
    Knauer, J. P.
    Lees, A.
    Cao, D.
    Campbell, E. M.
    Farmakis, P.
    Ejaz, R.
    Anderson, K. S.
    Epstein, R.
    Carroll-Nellenbeck, J.
    Igumenshchev, I. V.
    Marozas, J. A.
    Radha, P. B.
    Solodov, A. A.
    Thomas, C. A.
    Woo, K. M.
    Collins, T. J. B.
    Hu, S. X.
    Scullin, W.
    Turnbull, D.
    Goncharov, V. N.
    Churnetski, K.
    Forrest, C. J.
    Glebov, V. Yu.
    Heuer, P. V.
    Mcclow, H.
    Shah, R. C.
    Stoeckl, C.
    Theobald, W.
    Edgell, D. H.
    Ivancic, S.
    Rosenberg, M. J.
    Regan, S. P.
    Bredesen, D.
    Fella, C.
    Koch, M.
    Janezic, R. T.
    Bonino, M. J.
    Harding, D. R.
    Bauer, K. A.
    Sampat, S.
    Waxer, L. J.
    Labuzeta, M.
    Morse, S. F. B.
    Gatu-Johnson, M.
    Petrasso, R. D.
    Frenje, J. A.
    [J]. NATURE PHYSICS, 2024, 20 (05) : 751 - 757
  • [9] Demonstration of a hydrodynamically equivalent burning plasma in direct-drive inertial confinement fusion (vol 20, pg 751, 2024)
    Gopalaswamy, V.
    Williams, C. A.
    Betti, R.
    Patel, D.
    Knauer, J. P.
    Lees, A.
    Cao, D.
    Campbell, E. M.
    Farmakis, P.
    Ejaz, R.
    Anderson, K. S.
    Epstein, R.
    Carroll-Nellenbeck, J.
    Igumenshchev, I. V.
    Marozas, J. A.
    Radha, P. B.
    Solodov, A. A.
    Thomas, C. A.
    Woo, K. M.
    Collins, T. J. B.
    Hu, S. X.
    Scullin, W.
    Turnbull, D.
    Goncharov, V. N.
    Churnetski, K.
    Forrest, C. J.
    Glebov, V. Yu.
    Heuer, P. V.
    McClow, H.
    Shah, R. C.
    Stoeckl, C.
    Theobald, W.
    Edgell, D. H.
    Ivancic, S.
    Rosenberg, M. J.
    Regan, S. P.
    Bredesen, D.
    Fella, C.
    Koch, M.
    Janezic, R. T.
    Bonino, M. J.
    Harding, D. R.
    Bauer, K. A.
    Sampat, S.
    Waxer, L. J.
    Labuzeta, M.
    Morse, S. F. B.
    Gatu-Johnson, M.
    Petrasso, R. D.
    Frenje, J. A.
    [J]. NATURE PHYSICS, 2024, : 1217 - 1217