Neuronic convolution model for spatiotemporal information representation and processing

被引:0
|
作者
Fu, LY [1 ]
Li, YD [1 ]
机构
[1] CSIRO, Bentley, WA 6102, Australia
关键词
D O I
10.1109/IJCNN.2001.938782
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
How to represent spatiotemporal information in an artificial neuron model has been a problem of long-standing interest in artificial intelligence. After a brief review of recent advances, Caianiello's neuronic convolutional model is extended in this paper for spatiotemporal information representation. The kernel functions that correspond to the convolutional neuron's receptive field profile can be described by neural wavelets, The convolutional neuron-based multilayer network and its back propagation algorithm are developed to perform spatiotemporal pattern processing. The results provide a natural framework for the discussion of spatiotemporal information representation in an artificial neural network.
引用
收藏
页码:2614 / 2619
页数:6
相关论文
共 50 条
  • [1] Spatiotemporal forecasting model based on hybrid convolution for local weather prediction post-processing
    Xiang, Li
    Xiang, Jie
    Guan, Jiping
    Zhang, Lifeng
    Cao, Zenghui
    Xia, Jilu
    [J]. FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [2] Representation and processing of negated information
    Hemforth, Barbara
    Shuval, Noa
    Rigaut, Catherine
    [J]. INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2008, 43 (3-4) : 676 - 676
  • [3] Collective Representation Learning on Spatiotemporal Heterogeneous Information Networks
    Chandra, Dakshak Keerthi
    Wang, Pengyang
    Leopold, Jennifer
    Fu, Yanjie
    [J]. 27TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (ACM SIGSPATIAL GIS 2019), 2019, : 319 - 328
  • [4] Information Representation and Processing in Cognitive Nanoinformatics
    Shakhnov, Vadim
    Rezchikova, Elena
    Zinchenko, Lyudmila
    Kosolapov, Ilya
    [J]. 2014 5TH IEEE CONFERENCE ON COGNITIVE INFOCOMMUNICATIONS (COGINFOCOM), 2014, : 43 - 47
  • [5] Physics of Information Representation, Transmission and Processing
    Svitek, Miroslav
    [J]. PROCEEDINGS OF THE 8TH WSEAS INTERNATIONAL CONFERENCE ON DATA NETWORKS, COMMUNICATIONS, COMPUTERS (DNCOCO '09), 2009, : 205 - 212
  • [6] Common spatiotemporal processing of visual features shapes object representation
    Papale, Paolo
    Betta, Monica
    Handjaras, Giacomo
    Malfatti, Giulia
    Cecchetti, Luca
    Rampinini, Alessandra
    Pietrini, Pietro
    Ricciardi, Emiliano
    Turella, Luca
    Leo, Andrea
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [7] Common spatiotemporal processing of visual features shapes object representation
    Paolo Papale
    Monica Betta
    Giacomo Handjaras
    Giulia Malfatti
    Luca Cecchetti
    Alessandra Rampinini
    Pietro Pietrini
    Emiliano Ricciardi
    Luca Turella
    Andrea Leo
    [J]. Scientific Reports, 9
  • [8] A digital pixel cell for address event representation image convolution processing
    Camuñas-Mesa, L
    Acosta-Jiménez, A
    Serrano-Gotarredona, T
    Linares-Barranco, B
    [J]. Bioengineered and Bioinspired Systems II, 2005, 5839 : 160 - 171
  • [9] DYNAMIC SPATIOTEMPORAL REPRESENTATION OF SENSORY INFORMATION IN THE OLFACTORY-BULB
    DIPRISCO, GV
    FREEMAN, WJ
    [J]. ACTA CIENTIFICA VENEZOLANA, 1986, 37 (05): : 526 - 531
  • [10] An ontology for the representation of spatiotemporal jurisdictional domains in information retrieval systems
    Lopez-Pellicer, Francisco J.
    Lacasta, Javier
    Florczyk, Aneta
    Nogueras-Iso, Javier
    Javier Zarazaga-Soria, F.
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2012, 26 (04) : 579 - 597