Metabolomic and Transcriptomic Analyses of Lycium barbarum L. under Heat Stress

被引:6
|
作者
Qin, Xiaoya [1 ]
Qin, Beibei [2 ]
He, Wei [2 ]
Chen, Yan [2 ]
Yin, Yue [1 ]
Cao, Youlong [1 ]
An, Wei [1 ]
Mu, Zixin [2 ]
Qin, Ken [1 ]
机构
[1] Ningxia Acad Agr & Forestry Sci, Natl Wolfberry Engn Res Ctr, Wolfberry Sci Inst, Yinchuan 750002, Ningxia, Peoples R China
[2] Northwest A&F Univ, Coll Life Sci, Yangling 712100, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
heat stress; wolfberry; transcriptome; metabolome; amino acid; TOMATO GENOTYPES; TOLERANCE; PLANTS;
D O I
10.3390/su141912617
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Heat stress has a strong and detrimental effect on plant growth and yield. Goji berry or wolfberry (Lycium barbarum L.) is a dual-purpose medicinal and food plant but an increase in high temperatures has caused a serious decline in wolfberry yield and quality. In this study, we first explored the heat stress responses of Goji berry, and found that heat stress adaptation mechanisms fluctuated over 48 h. Moreover, L. barbarum 1402 was more heat resistant while L. barbarum Ningqi No. 7 (N7) was sensitive to high temperatures, in which amino acids and alkaloids played key roles; expression and accumulation timing was also crucial. That is, 1402 responded to heat stress rapidly starting at 1 h under high temperature, activated related genes, and accumulated metabolites earlier in the amino acid metabolic pathway compared to N7, which responded to heat stress starting at 3 h under high temperature. Thus, 1402 resisted high temperatures much earlier and better compared to N7. Furthermore, joint transcriptome and metabolome analysis results showed that L-phenylalanine, L-tyrosine, N-benzylformamide, N-benzylmethylene isomethylamine, lysoPC 19:1, and N-acetyl-D-glucosamine-1-phosthate, as well as their related genes, were higher in content, or earlier in expression, in 1402 compared to N7 under heat treatment. This study initially elucidates that Goji berry 1402 has a better tolerance to heat stress than N7 for earlier and higher expression or accumulation of amino acids and alkaloids when related to high temperatures.
引用
下载
收藏
页数:19
相关论文
共 50 条
  • [1] Transcriptomic and metabolomic analyses of Lycium ruthenicum and Lycium barbarum fruits during ripening
    Jianhua Zhao
    Haoxia Li
    Yue Yin
    Wei An
    Xiaoya Qin
    Yajun Wang
    Yanlong Li
    Yunfang Fan
    Youlong Cao
    Scientific Reports, 10
  • [2] Transcriptomic and metabolomic analyses of Lycium ruthenicum and Lycium barbarum fruits during ripening
    Zhao, Jianhua
    Li, Haoxia
    Yin, Yue
    An, Wei
    Qin, Xiaoya
    Wang, Yajun
    Li, Yanlong
    Fan, Yunfang
    Cao, Youlong
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [3] Correction to: Metabolomic and transcriptomic analysis of Lycium chinese and L. ruthenicum under salinity stress
    Xiaoya Qin
    Yue Yin
    Jianhua Zhao
    Wei An
    Yunfang Fan
    Xiaojie Liang
    Youlong Cao
    BMC Plant Biology, 22
  • [4] Metabolomic and transcriptomic analysis of Lycium chinese and L. ruthenicum under salinity stress (vol 22, 8, 2022)
    Qin, Xiaoya
    Yin, Yue
    Zhao, Jianhua
    An, Wei
    Fan, Yunfang
    Liang, Xiaojie
    Cao, Youlong
    BMC PLANT BIOLOGY, 2022, 22 (01)
  • [5] Comprehensive evaluation of nitrogen use efficiency of different Lycium barbarum L. cultivars under nitrogen stress
    Shi, Zhigang
    Wei, Feng
    Wan, Ru
    Li, Yunxiang
    Wang, Yajun
    An, Wei
    Qin, Ken
    Dai, Guoli
    Cao, Youlong
    Chen, Xiaoyi
    Wang, Xiuying
    Yang, Libin
    SCIENTIA HORTICULTURAE, 2022, 295
  • [6] Review on the Diseases and Insects of Lycium barbarum L.
    Cao Yanting
    Liu Jianli
    Plant Diseases and Pests, 2014, (06) : 8 - 12
  • [7] Arbuscular mycorrhizal symbiosis regulates hormone and osmotic equilibrium of Lycium barbarum L. under salt stress
    Liu, H. G.
    Wang, Y. J.
    Hart, M.
    Chen, H.
    Tang, M.
    MYCOSPHERE, 2016, 7 (06) : 828 - 843
  • [8] Changes in the morphology traits, anatomical structure of the leaves and transcriptome in Lycium barbarum L. under salt stress
    Yao, Xiao-Cui
    Meng, Li-Fang
    Zhao, Wang-Li
    Mao, Gui-Lian
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [9] Changes in extra-virgin olive oil added with Lycium barbarum L. carotenoids during frying: Chemical analyses and metabolomic approach
    Blasi, F.
    Rocchetti, G.
    Montesano, D.
    Lucini, L.
    Chiodelli, G.
    Ghisoni, S.
    Baccolo, G.
    Simonetti, M. S.
    Cossignani, L.
    FOOD RESEARCH INTERNATIONAL, 2018, 105 : 507 - 516
  • [10] Physiological and biochemical characteristics of leaf blade on different age branches of Lycium barbarum L. under salt stress
    蔺海明
    张有福
    贾恢先
    肖雯
    中国生态农业学报(中英文), 2007, (05) : 112 - 114