Asymptotics of the discrete log-concave maximum likelihood estimator and related applications

被引:26
|
作者
Balabdaoui, Fadoua [1 ]
Jankowski, Hanna [2 ]
Rufibach, Kaspar [3 ]
Pavlides, Marios [4 ]
机构
[1] Univ Paris 09, F-75775 Paris, France
[2] York Univ, Toronto, ON M3J 2R7, Canada
[3] Univ Zurich, CH-8006 Zurich, Switzerland
[4] Queens Univ Belfast, Belfast BT7 1NN, Antrim, North Ireland
关键词
Confidence interval; Discrete distribution; H1N1; Log-concavity; Misspecification; Non-parametric estimation; Shape constraints; INFERENCE; DENSITY; PROBABILITY;
D O I
10.1111/rssb.12011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The assumption of log-concavity is a flexible and appealing non-parametric shape constraint in distribution modelling. In this work, we study the log-concave maximum likelihood estimator of a probability mass function. We show that the maximum likelihood estimator is strongly consistent and we derive its pointwise asymptotic theory under both the well-specified and misspecified settings. Our asymptotic results are used to calculate confidence intervals for the true log-concave probability mass function. Both the maximum likelihood estimator and the associated confidence intervals may be easily computed by using the R package logcondiscr. We illustrate our theoretical results by using recent data from the H1N1 pandemic in Ontario, Canada.
引用
收藏
页码:769 / 790
页数:22
相关论文
共 50 条
  • [1] SMOOTHED LOG-CONCAVE MAXIMUM LIKELIHOOD ESTIMATION WITH APPLICATIONS
    Chen, Yining
    Samworth, Richard J.
    STATISTICA SINICA, 2013, 23 (03) : 1373 - 1398
  • [2] Theoretical properties of the log-concave maximum likelihood estimator of a multidimensional density
    Cule, Madeleine
    Samworth, Richard
    ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 254 - 270
  • [3] Maximum likelihood estimation of the mixture of log-concave densities
    Hu, Hao
    Wu, Yichao
    Yao, Weixin
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 101 : 137 - 147
  • [4] Exact solutions in log-concave maximum likelihood estimation
    Grosdos, Alexandros
    Heaton, Alexander
    Kubjas, Kaie
    Kuznetsova, Olga
    Scholten, Georgy
    Sorea, Miruna-Stefana
    ADVANCES IN APPLIED MATHEMATICS, 2023, 143
  • [5] Maximum likelihood estimation for totally positive log-concave densities
    Robeva, Elina
    Sturmfels, Bernd
    Tran, Ngoc
    Uhler, Caroline
    SCANDINAVIAN JOURNAL OF STATISTICS, 2021, 48 (03) : 817 - 844
  • [6] Computing maximum likelihood estimators of a log-concave density function
    Rufibach, Kaspar
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2007, 77 (07) : 561 - 574
  • [7] Maximum likelihood estimation of log-concave densities on tree space
    Yuki Takazawa
    Tomonari Sei
    Statistics and Computing, 2024, 34
  • [8] Maximum likelihood estimation of log-concave densities on tree space
    Takazawa, Yuki
    Sei, Tomonari
    STATISTICS AND COMPUTING, 2024, 34 (02)
  • [9] LIMIT DISTRIBUTION THEORY FOR MAXIMUM LIKELIHOOD ESTIMATION OF A LOG-CONCAVE DENSITY
    Balabdaoui, Fadoua
    Rufibach, Kaspar
    Wellner, Jon A.
    ANNALS OF STATISTICS, 2009, 37 (03): : 1299 - 1331
  • [10] Maximum likelihood estimation of a multi-dimensional log-concave density
    Cule, Madeleine
    Samworth, Richard
    Stewart, Michael
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 545 - 607