On bifurcation braid monodromy of elliptic fibrations

被引:4
|
作者
Lönne, M [1 ]
机构
[1] Univ Liverpool, Dept Math Sci, Liverpool L69 7ZL, Merseyside, England
关键词
elliptic surfaces; braid monodromy;
D O I
10.1016/j.top.2006.03.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose to study a new kind of monodromy homomorphism for families of regular elliptic fibrations of a given differentiable fibration type to get a hold on topological properties of moduli stacks of elliptic surfaces. In specific cases, including the most significant one, when all singular fibres are nodal irreducible rational curves, we compute the corresponding monodromy group, a subgroup of the mapping class group of the fibration base punctured at the singular values of the fibration. We study a tentative algebraic characterisation and give implications for the group of diffeomorphisms compatible with the fibration. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:785 / 806
页数:22
相关论文
共 50 条
  • [1] Bifurcation braid monodromy of plane curves
    Loenne, Michael
    [J]. COMPLEX AND DIFFERENTIAL GEOMETRY, 2011, 8 : 235 - 255
  • [2] Rationality of moduli of elliptic fibrations with fixed monodromy
    Bogomolov, F
    Petrov, T
    Tschinkel, Y
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (06) : 1105 - 1160
  • [3] Rationality of Moduli of Elliptic Fibrations with Fixed Monodromy
    F. Bogomolov
    T. Petrov
    Y. Tschinkel
    [J]. Geometric & Functional Analysis GAFA, 2002, 12 : 1105 - 1160
  • [4] Versal braid monodromy
    Loenne, Michael
    [J]. COMPTES RENDUS MATHEMATIQUE, 2008, 346 (15-16) : 873 - 876
  • [5] On braid monodromy factorizations
    Kharlamov, VM
    Kulikov, VS
    [J]. IZVESTIYA MATHEMATICS, 2003, 67 (03) : 499 - 534
  • [6] Dihedral monodromy and Xiao fibrations
    Alberto Albano
    Gian Pietro Pirola
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2016, 195 : 1255 - 1268
  • [7] Dihedral monodromy and Xiao fibrations
    Albano, Alberto
    Pirola, Gian Pietro
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (04) : 1255 - 1268
  • [8] Braid monodromy of univariate fewnomials
    Esterov, Alexander
    Lang, Lionel
    [J]. GEOMETRY & TOPOLOGY, 2021, 25 (06) : 3053 - 3077
  • [9] Braid monodromy of special curves
    Amram, M
    Teicher, M
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2001, 10 (02) : 171 - 212
  • [10] Effective invariants of braid monodromy
    Artal Bartolo, Enrique
    Carmona Ruber, Jorge
    Cogolludo Agustin, Jose Ignacio
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (01) : 165 - 183