Semiclassical dynamics for torsional Newton-Cartan strings

被引:13
|
作者
Roychowdhury, Dibakar [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Phys, Roorkee 247667, Uttarakhand, India
关键词
D O I
10.1016/j.nuclphysb.2020.115132
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We explore folded spinning string configurations over torsional Newton Cartan (TNC) geometry with R x S-2 topology within the semiclassical approximation. We consider the large c and/or nonrelativistic (NR) limit associated with the world-sheet d.o.f. and compute the one loop stringy corrections to the energy spectrum in the dual Spin Matrix Theory (SMT) theory in the limit of strong (g >> 1) coupling. (C) 2020 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Torsional Newton-Cartan Geometry
    Bergshoeff, Eric
    Chatzistavrakidis, Athanasios
    Romano, Luca
    Rosseel, Jan
    GEOMETRIC SCIENCE OF INFORMATION, GSI 2017, 2017, 10589 : 367 - 374
  • [2] Torsional string Newton-Cartan geometry for non-relativistic strings
    Bidussi, Leo
    Harmark, Troels
    Hartong, Jelle
    Obers, Niels A.
    Oling, Gerben
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (02)
  • [3] Torsional string Newton-Cartan geometry for non-relativistic strings
    Leo Bidussi
    Troels Harmark
    Jelle Hartong
    Niels A. Obers
    Gerben Oling
    Journal of High Energy Physics, 2022
  • [4] Generalized Newton-Cartan geometries for particles and strings
    Bergshoeff, E. A.
    van Helden, K.
    Lahnsteiner, J.
    Romano, L.
    Rosseel, J.
    CLASSICAL AND QUANTUM GRAVITY, 2023, 40 (07)
  • [5] Torsional Newton-Cartan geometry and Lifshitz holography
    Christensen, Morten H.
    Hartong, Jelle
    Obers, Niels A.
    Rollier, B.
    PHYSICAL REVIEW D, 2014, 89 (06):
  • [6] Torsional Newton-Cartan geometry and the Schrodinger algebra
    Bergshoeff, Eric A.
    Hartong, Jelle
    Rosseel, Jan
    CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (13)
  • [7] Torsional Newton-Cartan geometry from the Noether procedure
    Festuccia, Guido
    Hansen, Dennis
    Hartong, Jelle
    Obers, Niels A.
    PHYSICAL REVIEW D, 2016, 94 (10)
  • [8] Torsional Newton-Cartan gravity and strong gravitational fields
    Van den Bleeken, Dieter
    15TH MARCEL GROSSMANN MEETING, PT A, 2022, : 756 - 761
  • [9] Covariant Poisson’s equation in torsional Newton-Cartan gravity
    Mohammad Abedini
    Hamid R. Afshar
    Ahmad Ghodsi
    Journal of High Energy Physics, 2019
  • [10] Torsional Newton-Cartan geometry from Galilean gauge theory
    Banerjee, Rabin
    Mukherjee, Pradip
    CLASSICAL AND QUANTUM GRAVITY, 2016, 33 (22)