Limit cycles bifurcating of Kolmogorov systems in R2 and in R3

被引:8
|
作者
Llibre, Jaume [1 ]
Paulina Martinez, Y. [2 ,3 ]
Valls, Claudia [4 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Fac Ciencies, Barcelona 08193, Spain
[2] Ctr Recerca Matemat, Barcelona, Spain
[3] Univ Bio Bio, Fac Ciencias, Dept Matemat, Casilla 5-C, Concepcion, Chile
[4] Univ Lisbon, Ctr Math Anal Geometry & Dynam Syst, Inst Super Tecn, Dept Matemat, P-1049001 Lisbon, Portugal
基金
欧盟地平线“2020”;
关键词
Kolmogorov systems; Limit cycles; Hopf bifurcation; Zero-Hopf bifurcation;
D O I
10.1016/j.cnsns.2020.105401
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we consider the Kolmogorov system of degree 3 in R-2 and R-3 having an equilibrium point in the positive quadrant and octant, respectively. We provide sufficient conditions in order that the equilibrium point will be a Hopf point for the planar case and a zero-Hopf point for the spatial one. We study the limit cycles bifurcating from these equilibria using averaging theory of second and first order, respectively. We note that the equilibrium point is located in the quadrant or octant where the Kolmogorov systems have biological meaning. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Limit cycles bifurcating from isochronous surfaces of revolution in R3
    Llibre, Jaume
    Rebollo-Perdomo, Salomon
    Torregrosa, Joan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 381 (01) : 414 - 426
  • [2] Limit Cycles Bifurcating from a 2-Dimensional Isochronous Torus in R3
    Llibre, Jaume
    Rebollo-Perdomo, Salomon
    Torregrosa, Joan
    [J]. ADVANCED NONLINEAR STUDIES, 2011, 11 (02) : 377 - 389
  • [3] Rationality of R2 and R3
    Dolgachev, Igor V.
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2008, 4 (02) : 501 - 508
  • [4] Bifurcation of Limit Cycles and Isochronous Centers on Center Manifolds for a Class of Cubic Kolmogorov Systems in R3
    Gu, Jieping
    Zegeling, Andre
    Huang, Wentao
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (02)
  • [5] COUNTABLE DECOMPOSITIONS OF R2 AND R3
    ERDOS, P
    KOMJATH, P
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (04) : 325 - 331
  • [6] Regularity of solutions to the liquid crystals systems in R2 and R3
    Dai, Mimi
    Qing, Jie
    Schonbek, Maria
    [J]. NONLINEARITY, 2012, 25 (02) : 513 - 532
  • [7] KOLMOGOROV R2/3 LAW
    DICKEY, TD
    MELLOR, GL
    [J]. PHYSICS OF FLUIDS, 1979, 22 (06) : 1029 - 1032
  • [8] Immiscible fluid clusters in R2 and R3
    Morgan, F
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 1998, 45 (03) : 441 - 450
  • [9] Limit Cycles for Discontinuous Piecewise Differential Systems in R3 Separated by a Paraboloid
    Jimenez, Johana
    Llibre, Jaume
    Valls, Claudia
    [J]. DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2023,
  • [10] Geometric properties of Grassmannian frames for R2 and R3
    Benedetto, John J.
    Kolesar, Joseph D.
    [J]. EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2006,