The computation of accuracy of quality parameters by means of a Monte Carlo simulation

被引:1
|
作者
Ciarlini, P [1 ]
Gigli, A [1 ]
Regoliosi, G [1 ]
机构
[1] CNR, Ist Appl Calcolo M Picone, I-00161 Rome, Italy
关键词
bootstrap; capability index; statistical process control;
D O I
10.1080/03610919908813580
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The bootstrap methodology is applied to control quality of an industrial production according to the specifications required by the costumer. A comparison between the approach based on the capability index and normality assumptions, and the bootstrap approach is given using real and simulated data. The procedure allows to estimate tail probabilities even in regions not supported by data, with an accuracy independent of the sample variance also when data are not "nearly" normal.
引用
收藏
页码:821 / 848
页数:28
相关论文
共 50 条
  • [1] Monte Carlo simulation of quantum computation
    Cerf, NJ
    Koonin, SE
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (2-5) : 143 - 152
  • [2] Optical measurement of aircraft attitude parameters and accuracy Monte Carlo simulation
    Li, Zhe
    Ding, Zhen-Liang
    Yuan, Feng
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2009, 39 (05): : 1401 - 1406
  • [3] Computation of the Reliability of Electric Energy Distributing Networks by Means of the Monte-Carlo-Simulation.
    Pfeifer, Wolfgang
    Bauch, Heinz
    Elektrie, 1982, 36 (04): : 205 - 220
  • [4] Influence of simulation parameters on the speed and accuracy of Monte Carlo calculations using PENEPMA
    Llovet, X.
    Salvat, F.
    EMAS 2017 WORKSHOP - 15TH EUROPEAN WORKSHOP ON MODERN DEVELOPMENTS AND APPLICATIONS IN MICROBEAM ANALYSIS & IUMAS-7 MEETING - 7TH MEETING OF THE INTERNATIONAL UNION OF MICROBEAM ANALYSIS SOCIETIES, 2018, 304
  • [5] Efficient energy computation for Monte Carlo simulation of proteins
    Lotan, I
    Schwarzer, F
    Latombe, JC
    ALGORITHMS IN BIOINFORMATICS, PROCEEDINGS, 2003, 2812 : 354 - 373
  • [6] Simulation of Bayes' rule by means of Monte Carlo method
    Gangur, Mikulas
    Svoboda, Milan
    TEACHING STATISTICS, 2018, 40 (03) : 83 - 87
  • [7] DETERMINATION OF ACCURACY REQUIREMENTS FOR FUTURE TERMINAL AREA NAVIGATION SYSTEMS BY MEANS OF A MONTE-CARLO SIMULATION
    FRICKE, M
    HORMANN, A
    ZEITSCHRIFT FUR FLUGWISSENSCHAFTEN UND WELTRAUMFORSCHUNG, 1984, 8 (03): : 173 - 181
  • [8] Flux profile modeling: Monte Carlo simulation and numerical computation
    Venkat, R
    Pemmireddy, BR
    Vijayagopal, R
    Cheng, H
    Bresnahan, R
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2004, 22 (03): : 1549 - 1553
  • [9] Monte Carlo Simulation on GPGPU using Prefix Computation method
    Babu, P. Ravi
    Shyamala, K.
    Rao, K. Srinivasa
    2015 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND COMMUNICATION TECHNOLOGIES, 2015,
  • [10] Monte Carlo simulation of biological shielding parameters in PGNAA
    Yang, Jianbo
    Peng, Kexin
    Qiao, Yujie
    Zhang, Can
    Li, Rui
    Li, Zhe
    MICRO & NANO LETTERS, 2018, 13 (04): : 457 - 460