Genetic and morpho-physiological analyses of the tolerance and recovery mechanisms in seedling stage spring wheat under drought stress

被引:13
|
作者
Ahmed, Asmaa A. M. [1 ]
Dawood, Mona F. A. [2 ]
Elfarash, Ameer [1 ]
Mohamed, Elsayed A. [1 ]
Hussein, Mohamed Y. [1 ]
Borner, Andreas [3 ]
Sallam, Ahmed [1 ,3 ]
机构
[1] Assiut Univ, Fac Agr, Dept Genet, Assiut, Egypt
[2] Assiut Univ, Fac Sci, Dept Bot & Microbiol, Assiut, Egypt
[3] Leibniz Inst Plant Genet & Crop Plant Res IPK, Dept Genebank, Resources Genet & Reprod, Gatersleben, Germany
关键词
drought tolerance; genetic variation; morphological traits; seedling stage; spring wheat; physiological traits; DREB genes; AMINO-ACID ACCUMULATION; WATER-USE EFFICIENCY; PROLINE; RESPONSES; YIELD; METABOLISM; CULTIVARS; SALINITY; CRITERIA; TISSUES;
D O I
10.3389/fgene.2022.1010272
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Drought is one of the complex abiotic stresses that affect the growth and production of wheat in arid and semiarid countries. In this study, a set of 172 diverse spring wheat genotypes from 20 different countries were assessed under drought stress at the seedling stage. Besides seedling length, two types of traits were recorded, namely: tolerance traits (days to wilting, leaf wilting, and the sum of leaf wilting), and recovery traits (days to regrowth, regrowth biomass, and drought survival rate). In addition, tolerance index, recovery index, and drought tolerance index (DTI) were estimated to select the most drought tolerant genotypes. Moreover, leaf protein content (P), amino acid (AM), proline content (PRO), glucose (G), fructose (F), and total soluble carbohydrates (TSC) were measured under control and drought conditions to study the changes in each physiological trait due to drought stress. All genotypes showed a high significant genetic variation in all the physio-morphological traits scored under drought stress. High phenotypic and genotypic correlations were found among all seedling morphological traits. Among the studied indices, the drought tolerance index (DTI) had the highest phenotypic and genotypic correlations with all tolerance and recovery traits. The broad-sense heritability (H-2) estimates were high for morphological traits (83.85-92.27), while the physiological traits ranged from 96.41 to 98.68 under the control conditions and from 97.13 to 99.99 under drought stress. The averages of the physiological traits (proteins, amino acids, proline, glucose, fructose, and total soluble carbohydrates) denoted under drought stress were higher than those recorded under well-watered conditions except for proteins. In this regard, amino acids, glucose, and total soluble carbohydrates had a significant correlation with all morphological traits. The selection for drought tolerance revealed 10 tolerant genotypes from different countries (8 genotypes from Egypt, one from Morocco, and one from the United States). These selected genotypes were screened for the presence of nine specific TaDREB1 alleles. Six primers were polymorphic among the selected genotypes. Genetic diversity among the selected genotypes was investigated using 21,450 SNP markers. The results of the study shed light on the different mechanisms for drought tolerance that wheat plants use to tolerate and survive under drought stress. The genetic analysis performed in this study suggested the most suitable genotypes for selective breeding at the seedling stage under water deficit.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Morpho-physiological Characterization of Spring Wheat Genotypes under Drought Stress
    Baloch, Muhammad Jurial
    Dunwell, Jim
    Khan, Naqib Ullah
    Jatoi, Wajid Ali
    Khakhwani, Abdul Aziz
    Vessar, Nasreen Fatima
    Gul, Samrin
    INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY, 2013, 15 (05) : 945 - 950
  • [2] MORPHO-PHYSIOLOGICAL ASSESSMENT OF WHEAT (TRITICUM AESTIVUM L.) GENOTYPES FOR DROUGHT STRESS TOLERANCE AT SEEDLING STAGE
    Faisal, Summiya S. M.
    Mujtaba, M. A. Khan
    Mahboob, Wajid
    PAKISTAN JOURNAL OF BOTANY, 2017, 49 (02) : 445 - 452
  • [3] Multivariate Analysis of Morpho-Physiological Traits Reveals Differential Drought Tolerance Potential of Bread Wheat Genotypes at the Seedling Stage
    Mohi-Ud-Din, Mohammed
    Hossain, Md Alamgir
    Rohman, Md Motiar
    Uddin, Md Nesar
    Haque, Md Sabibul
    Ahmed, Jalal Uddin
    Hossain, Akbar
    Hassan, Mohamed M.
    Mostofa, Mohammad Golam
    PLANTS-BASEL, 2021, 10 (05):
  • [4] Genetic and Morpho-Physiological Differentiation of Sugarcane Genotypes under Drought Stress
    Silva, Marcelo de Almeida
    Geronimo, Gabriela Zavanelli
    Santos, Hallam Luiz
    INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY, 2020, 24 (02) : 311 - 318
  • [5] Dissection of Drought Tolerance in Upland Cotton Through Morpho-Physiological and Biochemical Traits at Seedling Stage
    Zahid, Zobia
    Khan, Muhammad Kashif Riaz
    Hameed, Amjad
    Akhtar, Muhammad
    Ditta, Allah
    Hassan, Hafiz Mumtaz
    Farid, Ghulam
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [6] Conferring drought-tolerant wheat genotypes through morpho-physiological and chlorophyll indices at seedling stage
    Ahmed, Hafiz Ghulam Muhu-Din
    Zeng, Yawen
    Yang, Xiaomeng
    Anwaar, Hafiz Arslan
    Mansha, Muhammad Zeeshan
    Hanif, Ch. M. Shahid
    Ikram, Kamran
    Ullah, Aziz
    Alghanem, Suliman Mohammed Suliman
    SAUDI JOURNAL OF BIOLOGICAL SCIENCES, 2020, 27 (08) : 2116 - 2123
  • [7] Genetic mapping of morpho-physiological traits involved during reproductive stage drought tolerance in rice
    Barik, Saumya Ranjan
    Pandit, Elssa
    Pradhan, Sharat Kumar
    Mohanty, Shakti Prakash
    Mohapatra, Trilochan
    PLOS ONE, 2019, 14 (12):
  • [8] Morpho-physiological and molecular characterization of drought tolerance traits in Gossypium hirsutum genotypes under drought stress
    A. M. Abdelmoghny
    K. P. Raghavendra
    J. Annie Sheeba
    H. B. Santosh
    Jayant H. Meshram
    Suman Bala Singh
    K. R. Kranthi
    V. N. Waghmare
    Physiology and Molecular Biology of Plants, 2020, 26 : 2339 - 2353
  • [9] Morpho-physiological and molecular characterization of drought tolerance traits in Gossypium hirsutum genotypes under drought stress
    Abdelmoghny, A. M.
    Raghavendra, K. P.
    Sheeba, J. Annie
    Santosh, H. B.
    Meshram, Jayant H.
    Singh, Suman Bala
    Kranthi, K. R.
    Waghmare, V. N.
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2020, 26 (12) : 2339 - 2353
  • [10] Wheat Drought Tolerance: Morpho-Physiological Criteria, Stress Indexes, and Yield Responses in Newly Sand Soils
    Ghanem, Hanan Essa
    Al-Farouk, M. O.
    JOURNAL OF PLANT GROWTH REGULATION, 2024, 43 (07) : 2234 - 2250